35 research outputs found

    Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane

    No full text
    The purpose of this study was to develop a process to achieve biodegradable chitooligosaccharide-based polyurethane (CPU) with improved hemocompatibility and mechanical properties. A series of CPUs with varying chitooligosaccharide (COS) content were prepared according to the conventional two-step method. First, the prepolymer was synthesized from poly(ε-caprolactone) (PCL) and uniform-size diurethane diisocyanates (HBH). Then, the prepolymer was chain-extended by COS in N,N-dimethylformamide (DMF) to obtain the weak-crosslinked CPU, and the corresponding films were obtained from the DMF solution by the solvent evaporation method. The uniform-size hard segments and slight crosslinking of CPU were beneficial for enhancing the mechanical properties, which were one of the essential requirements for long-term implant biomaterials. The chemical structure was characterized by FT-IR, and the influence of COS content in CPU on the physicochemical properties and hemocompatibility was extensively researched. The thermal stability studies indicated that the CPU films had lower initial decomposition temperature and higher maximum decomposition temperature than pure polyurethane (CPU-1.0) film. The ultimate stress, initial modulus, and surface hydrophilicity increased with the increment of COS content, while the strain at break and water absorption decreased, which was due to the increment of crosslinking density. The results of in vitro degradation signified that the degradation rate increased with the increasing content of COS in CPU, demonstrating that the degradation rate could be controlled by adjusting COS content. The surface hemocompatibility was examined by protein adsorption and platelet adhesion tests. It was found that the CPU films had improved resistance to protein adsorption and possessed good resistance to platelet adhesion. The slow degradation rate and good hemocompatibility of the CPUs showed great potential in blood-contacting devices. In addition, many active amino and hydroxyl groups contained in the structure of CPU could carry out further modification, which made it an excellent candidate for wide application in biomedical field

    Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly(ester-urethane) Film to Improve Surface Biocompatibility

    No full text
    In the paper, the chitooligosaccharide (CHO) was surface-grafted on the medical segmented poly(ester-urethane) (SPU) film by a facile two-step procedure to improve the surface biocompatibility. By chemical treatment of SPU film with hexamethylene diisocyanate under mild reaction condition, free -NCO groups were first introduced on the surface with high grafting density, which were then coupled with -NH2 groups of CHO to immobilize CHO on the SPU surface (SPU-CHO). The CHO-covered surface was characterized by FT-IR and water contact angle test. Due to the hydrophilicity of CHO, the SPU-CHO possessed higher surface hydrophilicity and faster hydrolytic degradation rate than blank SPU. The almost overlapping stress-strain curves of SPU and SPU-CHO films demonstrated that the chemical treatments had little destruction on the intrinsic properties of the substrate. In addition, the significant inhibition of platelet adhesion and protein adsorption on CHO-covered surface endowed SPU-CHO an outstanding surface biocompatibility (especially blood compatibility). These results indicated that the CHO-grafted SPU was a promising candidate as blood-contacting biomaterial for biomedical applications

    Seasonal Dynamics of Algal Net Primary Production in Response to Phosphorus Input in a Mesotrophic Subtropical Plateau Lake, Southwestern China

    No full text
    A comprehensive 3-dimensional hydrodynamic and eutrophication model, the environmental fluid dynamics code model (EFDC) with three functional phytoplankton groups, was applied to simulate the algal dynamics in a mesotrophic P-limited subtropical plateau lake, Lake Erhai, Southwestern China. Field investigations revealed the seasonal patterns in external total phosphorus (TP) input and TP concentration, as well as the composition of the phytoplankton community. The model was calibrated to reproduce qualitative features and the succession of phytoplankton communities, and the net primary production was calculated. The modeled daily net primary production (NPP) ranged between āˆ’16.89 and 15.12 mg C/m2/d and exhibited significant seasonal variation. The competition for phosphorus and temperature was identified as the primary governing factor of NPP by analyzing the parameter sensitivity and limitation factors of the lake. The simulation of four nutrient loading reduction scenarios suggested high phytoplankton biomass and NPP sensitivity to the external TP reduction. A significant positive correlation was found among NPP, total phytoplankton biomass and TP concentration. Overall, this work offers an alternative approach to estimating lake NPP, which has the potential to improve sustainable lake management

    Response of Nitrogen Removal Performance and Microbial Distribution to Seasonal Shock Nutrients Load in a Lakeshore Multicell Constructed Wetland

    No full text
    Multicell constructed wetlands (MCWs) on lakeshores are a prospective treatment technique. However, the factors affecting the nutrient removal performance of lakeshore MCWs at the field scale are unclear. This study chose a field-scale lakeshore MCW with the highest mass removal efficiency (approximately 49,175.12 mg māˆ’2 dayāˆ’1) for total nitrogen removal in the wet season to investigate the response of nitrogen removal and microbial distribution to seasonal shock nutrients load. The mass loading rates in the wet season were as high as 43~72 times over those in the dry season. Hence, a storage pond (SP), as a forebay retention cell, was necessary to mitigate the shock loads of the influent, which is beneficial to nitrogen removal of the MCW system. The two major genera in the sediments are heterotrophic nitrificationā€“aerobic denitrification bacteria, and the abundance and species of the nitrogen-related functional genera were higher in the wet season than the dry season. According to the results of redundancy analysis, the hydraulic residence time (29.4%, F = 2.2, p p < 0.05) were the major factors explaining microbial community variation, instead of environmental factors (temperature, pH, and dissolved oxygen). The shock loads of influent and the periodic saturation in sediments contributed to a complicated oxygen and nitrogen nutrient exchange environment resulting in higher abundance and species of nitrogen-related microbes, which is beneficial to nitrogen removal in lakeshore MCWs. The results provided a scientific basis for the optimal design of constructed wetlands on lakeshores

    Modeling Non-Point Source Nutrient Loads with Different Cropping Systems in an Agricultural Lake Watershed in Southwestern China: From Field to Watershed Scale

    No full text
    Understanding the influence of cropping systems on non-point source pollution (NPSP) is crucial, since NPSP has become the major nutrient source of lake eutrophication. How to identify the characteristics of the N and P balance at different spatial and temporal scales remains a challenge in pollution control and decision-making. In this study, we built a soil and water assessment tool (SWAT) model coupled with an export coefficient model for a NPSP simulation in the North of Erhai Lake Basin (NELB). A method was proposed to study the N and P transport from fields and the individual sub-basins to Erhai Lake using SWAT simulation. The results showed that the N and P loss fields were mainly situated in the vicinity of the Fengyu river and along the mainstream of the Miju and Mici rivers. N and P loss fields were mainly occupied by rice&ndash;broad bean/rice&ndash;rapeseed crops and vegetables. While the critical N and P load contribution areas were situated in the vicinity of downstream of the Miju, Yong&rsquo;an, and Luoshi rivers. The effects of different cropping systems on the N and P export to the watershed were insignificant in the NELB and decreased by 4&ndash;9% when changing cropping system compared to the original crops. The NPSP discharged from the critical areas was retained and purified by the flow and the reservoirs scattered along the rivers, and it was noticed that the N and P loss was mainly from the critical pollution discharge areas located downstream of Miju river. This study can provide an important simulation method for understanding NPSPs and, therefore, can help authorities improve agricultural land use and reduce lake pollution

    Changes in Air Quality from the COVID to the Post-COVID Era in the Beijing-Tianjin-Tangshan Region in China

    No full text
    This article discussed air quality changes in the Beijing-Tianjin-Tangshan (BTT) region. The air quality index (AQI) values, and the concentrations of PM2.5, PM10, SO2, CO, NO2, and O-3 in the BTT region during the COVID-19 outbreak in 2020 were, respectively, 79.4, 47.2 mu g m(-3), 73.4 mu g m(-3), 10.3 mu g m(-3), 0.87 mg m(-3), 33.6 mu g m(-3), and 90.7 mu g m(-3). However, they were, respectively, 102.7, 61.4 mu g m(-3), 121.0 mu g m(-3), 9.0 mu g m(-3), 0.88 mg m(-3), 40.1 mu g m(-3), and 84.0 mu g m(-3) during the same period in 2021, which is an increase of 29.2%, 30.1%, 64.8%, -12.9%, 1.94 %, 19.5%, and -7.4% compared with the values in 2020. The combined proportions of grade I and grade II during the COVID-19 outbreak in 2020 were 16.7% higher than those in the same period in 2021, so the air quality has deteriorated rapidly from 2020 to the post-COVID era in 2021. The possible reasons for poorer air quality are that the frequency of dusty weather and air pollutant discharge has increased, and meteorological conditions have been relatively unfavorable. The average AQI values, and concentrations of PM2.5, PM10, SO2, CO, NO2, and O-3 during the post-COVID period in 2021 respectively decreased by 14.8%, 29.0%, 14.6%, 22.5%, 37.4%, 14.8%, and 8.7%, compared with those in 2020. It is also worth noting that all the changes in air pollution during the post-COVID era have been consistent. The combined proportions of grade I and grade II during post-COVID period in 2021 were 18.4% higher than those during the same period of 2020, which indicates that the air quality during post-COVID 2021 has obviously improved compared with those in the same period of 2020. The possible reasons are a series of clean air policies and clean air actions, as well as favorable atmospheric diffusion conditions. These results indicate that clean air policies play a very important role in improving air quality

    A Mild Method for Surface-Grafting PEG Onto Segmented Poly(Ester-Urethane) Film with High Grafting Density for Biomedical Purpose

    No full text
    In the paper, poly(ethylene glycol) (PEG) was grafted on the surface of poly(ester-urethane) (SPEU) film with high grafting density for biomedical purposes. The PEG-surface-grafted SPEU (SPEU-PEG) was prepared by a three-step chemical treatment under mild-reaction conditions. Firstly, the SPEU film surface was treated with 1,6-hexanediisocyanate to introduce -NCO groups on the surface with high density (5.28 &times; 10&minus;7 mol/cm2) by allophanate reaction; subsequently, the -NCO groups attached to SPEU surface were coupled with one of -NH2 groups of tris(2-aminoethyl)amine via condensation reaction to immobilize -NH2 on the surface; finally, PEG with different molecular weight was grafted on the SPEU surface through Michael addition between terminal C = C bond of monoallyloxy PEG and -NH2 group on the film surface. The chemical structure and modified surface were characterized by FT-IR, 1H NMR, X-ray photoelectron spectroscopy (XPS), and water contact angle. The SPEU-PEGs displaying much lower water contact angles (23.9&ndash;21.8&deg;) than SPEU (80.5&deg;) indicated that the hydrophilic PEG chains improved the surface hydrophilicity significantly. The SPEU-PEG films possessed outstanding mechanical properties with strain at break of 866&ndash;884% and ultimate stress of 35.5&ndash;36.4 MPa, which were slightly lower than those of parent film, verifying that the chemical treatments had minimum deterioration on the mechanical properties of the substrate. The bovine serum albumin adsorption and platelet adhesion tests revealed that SPEU-PEGs had improved resistance to protein adsorption (3.02&ndash;2.78 &mu;g/cm2) and possessed good resistance to platelet adhesion (781&ndash;697 per mm2), indicating good surface hemocompatibility. In addition, due to the high grafting density, the molecular weight of surface-grafted PEG had marginal effect on the surface hydrophilicity and hemocompatibility

    Modeling Non-Point Source Nutrient Loads with Different Cropping Systems in an Agricultural Lake Watershed in Southwestern China: From Field to Watershed Scale

    No full text
    Understanding the influence of cropping systems on non-point source pollution (NPSP) is crucial, since NPSP has become the major nutrient source of lake eutrophication. How to identify the characteristics of the N and P balance at different spatial and temporal scales remains a challenge in pollution control and decision-making. In this study, we built a soil and water assessment tool (SWAT) model coupled with an export coefficient model for a NPSP simulation in the North of Erhai Lake Basin (NELB). A method was proposed to study the N and P transport from fields and the individual sub-basins to Erhai Lake using SWAT simulation. The results showed that the N and P loss fields were mainly situated in the vicinity of the Fengyu river and along the mainstream of the Miju and Mici rivers. N and P loss fields were mainly occupied by riceā€“broad bean/riceā€“rapeseed crops and vegetables. While the critical N and P load contribution areas were situated in the vicinity of downstream of the Miju, Yongā€™an, and Luoshi rivers. The effects of different cropping systems on the N and P export to the watershed were insignificant in the NELB and decreased by 4ā€“9% when changing cropping system compared to the original crops. The NPSP discharged from the critical areas was retained and purified by the flow and the reservoirs scattered along the rivers, and it was noticed that the N and P loss was mainly from the critical pollution discharge areas located downstream of Miju river. This study can provide an important simulation method for understanding NPSPs and, therefore, can help authorities improve agricultural land use and reduce lake pollution
    corecore