8 research outputs found

    Game model for online and offline retailers under buy-online and pick-up-in-store mode with delivery cost and random demand

    No full text
    Online retailers are increasingly adding buy-online and pick-up-in-store (BOPS) modes to order fulfilment. In this paper, we study a system of BOPS by developing a stochastic Nash equilibrium model with incentive compatibility constraints, where the online retailer seeks optimal online sale prices and an optimal delivery schedule in an order cycle, and the offline retailer pursues a maximal rate of sharing the profit owing to the consignment from the online retailer. By an expectation method and optimality conditions, the equilibrium model is first transformed into a system of constrained nonlinear equations. Then, by a case study and sensitivity analysis, the model is validated and the following practical insights are revealed. (I) Our method can reliably provide an equilibrium strategy for the online and offline retailers under BOPS mode, including the optimal online selling price, the optimal delivery schedule, the optimal inventory and the optimal allocation of profits. (II) Different model parameters, such as operational cost, price sensitivity coefficient, cross-sale factor, opportunity loss ratio and loss ratio of unsold goods, generate distinct impacts on the equilibrium solution and the profits of the BOPS system. (III) Optimization of the delivery schedule can generate greater consumer surplus, and makes the offline retailer share less sale profit from the online retailer, even if the total profit of the BOPS system becomes higher. (IV) Inventory subsidy is an indispensable factor to improve the applicability of the game model in BOPS mode. doi:10.1017/S144618112000012

    Partially Smoothing and Gradient-Based Algorithm for Optimizing the VMI System with Competitive Retailers under Random Demands

    No full text
    Vendor managed inventory (VMI) is an improved sustainable inventory management system, but it is difficult to establish and solve an integrated Stackelberg game model under the complicated practical environment. In this paper, a bilevel programming model is proposed to formulate the VMI system by taking into account the uncertainty of demand, the competition among retailers, the cooperative advertising, the shortage and holding costs, and the practical constraints. For the established stochastic model being associated with continuously random demands, a deterministic mathematical program with complementarity constraints (MPCC) is first derived by expectation method and the first-order optimality conditions of the lower-level problem. Then, with a partially smoothing technique, the MPCC is solved by transforming it into a series of standard smooth optimization subproblems. Finally, owing to complexity caused by evaluating the integrals with unknown decision variables in the objective function, an efficient algorithm is developed to solve the problem based on the gradient information of model. Sensitivity analysis has been employed to reveal a number of managerial implications from the constructed model and algorithm. (1) The participation rate depends on advertising expenditures from both the manufacturer and the retailer. There exists an optimal threshold of participation rate for the manufacturer, which can be provided by the intersection point of the manufacturer and retailer’s cost-profit curves. (2) The manufacturer’s advertising policy is less sensitive to uncertainty of demand than the change of the retailer’s advertising policy. (3) The manufacturer in the VMI system should concern about the differences caused by symmetric or asymmetric retailers

    Intelligent Dendritic Neural Model for Classification Problems

    No full text
    In recent years, the dendritic neural model has been widely employed in various fields because of its simple structure and inexpensive cost. Traditional numerical optimization is ineffective for the parameter optimization problem of the dendritic neural model; it is easy to fall into local in the optimization process, resulting in poor performance of the model. This paper proposes an intelligent dendritic neural model firstly, which uses the intelligent optimization algorithm to optimize the model instead of the traditional dendritic neural model with a backpropagation algorithm. The experiment compares the performance of ten representative intelligent optimization algorithms in six classification datasets. The optimal combination of user-defined parameters for the model evaluates by using Taguchi’s method, systemically. The results show that the performance of an intelligent dendritic neural model is significantly better than a traditional dendritic neural model. The intelligent dendritic neural model has small classification errors and high accuracy, which provides an effective approach for the application of dendritic neural model in engineering classification problems. In addition, among ten intelligent optimization algorithms, an evolutionary algorithm called biogeographic optimization algorithm has excellent performance, and can quickly obtain high-quality solutions and excellent convergence speed

    Intelligent Dendritic Neural Model for Classification Problems

    No full text
    In recent years, the dendritic neural model has been widely employed in various fields because of its simple structure and inexpensive cost. Traditional numerical optimization is ineffective for the parameter optimization problem of the dendritic neural model; it is easy to fall into local in the optimization process, resulting in poor performance of the model. This paper proposes an intelligent dendritic neural model firstly, which uses the intelligent optimization algorithm to optimize the model instead of the traditional dendritic neural model with a backpropagation algorithm. The experiment compares the performance of ten representative intelligent optimization algorithms in six classification datasets. The optimal combination of user-defined parameters for the model evaluates by using Taguchi’s method, systemically. The results show that the performance of an intelligent dendritic neural model is significantly better than a traditional dendritic neural model. The intelligent dendritic neural model has small classification errors and high accuracy, which provides an effective approach for the application of dendritic neural model in engineering classification problems. In addition, among ten intelligent optimization algorithms, an evolutionary algorithm called biogeographic optimization algorithm has excellent performance, and can quickly obtain high-quality solutions and excellent convergence speed

    Application and Evolution for Neural Network and Signal Processing in Large-Scale Systems

    No full text
    Low frequency oscillation is an important attribute of human brain activity, and the amplitude of low frequency fluctuation (ALFF) is an effective method to reflect the characteristics of low frequency oscillation, which has been widely used in the treatment of brain diseases and other fields. However, due to the low accuracy of the current analysis methods for low frequency signal extraction of ALFF, we propose the Fourier-based synchrosqueezing transform (FSST), which is often used in the field of signal processing to extract the ALFF of the low frequency power spectrum of the whole-time dimension. The low frequency characteristics of the extracted signal are compared with those of FSST and fast Fourier transform (FFT) through the resting-state data. It is clear that the signal extracted by FSST has more low frequency characteristics, which is significantly different from FFT
    corecore