220 research outputs found
Spatiotemporal Analysis of Land Surface Temperature in Tainan City by using Landsat 5 & Landsat 8
Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. In recent years, due to global warming and the urban heat island effect, the surface temperature has continued to rise, and the seasonal temperature changes are also very different. Increased surface temperatures, particularly in cities, are a major environmental issue that intensifies urban heat islands (UHIs). Decadal time-series analysis has historically relied on meteorological data. Due to the limited availability of remote sensing technology, decadal analysis of land surface temperature has been a serious concern. However, according to advanced technologies in remote sensing methods and sophisticated GIS software, Land Surface Temperature (LST) now can be estimated using thermal bands. The objective of this study is to monitor the spatiotemporal changes of the land surface temperature using Landsat 5 and Landsat 8. Tainan city, which is a highly developed city in southern Taiwan, is selected as the research area. The changes in the land surface temperature are assessed between the years 2007 and 2021. It simply requires applying a set of equations through a raster image calculator using ArcGIS. The LST of any Landsat satellite image can be retrieved by following steps: 1) Top of Atmospheric Spectral Radiance; 2) Conversion of Radiance to At-Sensor Temperature; 3) Calculating NDVI; 4) Calculating the Proportion of Vegetation; 5) Determination of ground emissivity, and 6) Calculating Land Surface Temperature. Near Infra-red are used to obtain Normalized Different Vegetation Index (NDVI). The results show that the average surface temperature of Tainan City increased slightly by 1.1 0C. The most significant increase in temperature was in the northern region of Tainan City which was the agricultural area that was in the post-harvest period.
Keywords: Land Surface Temperature (LST), Landsat 5, Landsat 8, Tainan City, GI
Improving yield and water use efficiency of apple trees through intercrop-mulch of crown vetch (Coronilla varia L.) combined with different fertilizer treatments in the Loess Plateau
Improving water use efficiency (WUE) and soil fertility is relevant for apple production in drylands. The effects of intercrop-mulch (IM) of crown vetch (Coronilla varia L.) combined with different fertilizer treatments on WUE of apple trees and soil fertility of apple orchards were assessed over three years (2011, 2013 and 2014). A split-plot design was adopted, in which the main treatments were IM and no intercrop-mulch (NIM). Five sub-treatments were established: no fertilization (CK); nitrogen and phosphorus fertilizer (NP); manure (M); N, P and potassium fertilizer (NPK); and NPK fertilizer combined with manure (NPKM). Due to mowing and mulching each month during July–September, the evapotranspiration for IM was 17.3% lower than that of NIM in the dry year of 2013. Additionally, the soil water storage of NPKM treatment was higher than that of CK during the experimental period. Thus, single fruit weight and fruit number per tree increased with IM and NPKM application. Moreover, applying NPKM with IM resulted in the highest yield (on average of three years), which was 73.25% and 130.51% greater than that of CK in IM and NIM, respectively. The WUE of NPKM combined with IM was also the highest in 2013 and 2014 (47.69 and 56.95% greater than applying IM alone). In addition, due to application of IM combined with NPKM, soil organic matter was increased by 25.8% compared with that of CK (in NIM). Additionally, application of IM combined with NPKM obtained more economic net return, compared to other combinations. Therefore, applying NPKM with IM is recommended for improving apple production in this rain-fed agricultural area
Open Design and 3D Printing of Face Shields: The Case Study of a UK-China Initiative
At the start of the COVID-19 outbreak, many countries lacked personal protective equipment (PPE) to protect healthcare workers. To address this problem, open design and 3D printing technologies were adopted to provide much-in-need PPEs for key workers. This paper reports an initiative by designers and engineers in the UK and China. The case study approach and content analysis method were used to study the stakeholders, the design process, and other relevant issues such as regulation. Good practice and lessons were summarised, and suggestions for using distributed 3D printing to supply PPEs were made. It concludes that 3D printing has played an important role in producing PPEs when there was a shortage of supply, and distributed manufacturing has the potential to quickly respond to local small-bench production needs. In the future, clearer specification, better match of demands and supply, and quicker evaluation against relevant regulations will provide efficiency and quality assurance for 3D printed PPE supplies
Semantic Entropy Can Simultaneously Benefit Transmission Efficiency and Channel Security of Wireless Semantic Communications
Recently proliferated deep learning-based semantic communications (DLSC)
focus on how transmitted symbols efficiently convey a desired meaning to the
destination. However, the sensitivity of neural models and the openness of
wireless channels cause the DLSC system to be extremely fragile to various
malicious attacks. This inspires us to ask a question: "Can we further exploit
the advantages of transmission efficiency in wireless semantic communications
while also alleviating its security disadvantages?". Keeping this in mind, we
propose SemEntropy, a novel method that answers the above question by exploring
the semantics of data for both adaptive transmission and physical layer
encryption. Specifically, we first introduce semantic entropy, which indicates
the expectation of various semantic scores regarding the transmission goal of
the DLSC. Equipped with such semantic entropy, we can dynamically assign
informative semantics to Orthogonal Frequency Division Multiplexing (OFDM)
subcarriers with better channel conditions in a fine-grained manner. We also
use the entropy to guide semantic key generation to safeguard communications
over open wireless channels. By doing so, both transmission efficiency and
channel security can be simultaneously improved. Extensive experiments over
various benchmarks show the effectiveness of the proposed SemEntropy. We
discuss the reason why our proposed method benefits secure transmission of
DLSC, and also give some interesting findings, e.g., SemEntropy can keep the
semantic accuracy remain 95% with 60% less transmission.Comment: 13 pages, 12 figure
Gattini 2010: Cutting Edge Science at the Bottom of the World
The high altitude Antarctic sites of Dome A and the South Pole offer intriguing locations for future large scale optical astronomical
Observatories. The Gattini project was created to measure the optical
sky brightness, large area cloud cover and aurora of the winter-time
sky above such high altitude Antarctic sites. The Gattini-DomeA camera
was installed on the PLATO instrument module as part of the Chinese-led
traverse to the highest point on the Antarctic plateau in January 2008.
This single automated wide field camera contains a suite of Bessel
photometric filters (B, V, R) and a long-pass red filter for the
detection and monitoring of OH emission. We have in hand one complete
winter-time dataset (2009) from the camera that was recently returned
in April 2010.
The Gattini-South Pole UV camera is a wide-field optical camera that in
2011 will measure for the first time the UV properties of the
winter-time sky above the South Pole dark sector. This unique dataset
will consist of frequent images taken in both broadband U and B filters
in addition to high resolution (R similar to 5000) long slit
spectroscopy over a narrow bandwidth of the central field. The camera
is a proof of concept for the 2m-class Antarctic Cosmic Web Imager
telescope, a dedicated experiment to directly detect and map the
redshifted lyman alpha fluorescence or Cosmic Web emission we believe
possible due to the unique geographical qualities of the site.
We present the current status of both projects
Photometry of Variable Stars from Dome A, Antarctica
Dome A on the Antarctic plateau is likely one of the best observing sites on
Earth thanks to the excellent atmospheric conditions present at the site during
the long polar winter night. We present high-cadence time-series aperture
photometry of 10,000 stars with i<14.5 mag located in a 23 square-degree region
centered on the south celestial pole. The photometry was obtained with one of
the CSTAR telescopes during 128 days of the 2008 Antarctic winter.
We used this photometric data set to derive site statistics for Dome A and to
search for variable stars. Thanks to the nearly-uninterrupted synoptic
coverage, we find 6 times as many variables as previous surveys with similar
magnitude limits. We detected 157 variable stars, of which 55% are
unclassified, 27% are likely binaries and 17% are likely pulsating stars. The
latter category includes delta Scuti, gamma Doradus and RR Lyrae variables. One
variable may be a transiting exoplanet.Comment: Accepted for publication in the Astronomical Journal. PDF version
with high-resolution figures available at
http://faculty.physics.tamu.edu/lmacri/papers/wang11.pd
The First Release of the CSTAR Point Source Catalog from Dome A, Antarctica
In 2008 January the 24th Chinese expedition team successfully deployed the
Chinese Small Telescope ARray (CSTAR) to DomeA, the highest point on the
Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with
a different filter (g, r, i and open) and has a 4.5degree x 4.5degree field of
view (FOV). It operates robotically as part of the Plateau Observatory, PLATO,
with each telescope taking an image every 30 seconds throughout the year
whenever it is dark. During 2008, CSTAR #1 performed almost flawlessly,
acquiring more than 0.3 million i-band images for a total integration time of
1728 hours during 158 days of observations. For each image taken under good sky
conditions, more than 10,000 sources down to 16 mag could be detected. We
performed aperture photometry on all the sources in the field to create the
catalog described herein. Since CSTAR has a fixed pointing centered on the
South Celestial Pole (Dec =-90 degree), all the sources within the FOV of CSTAR
were monitored continuously for several months. The photometric catalog can be
used for studying any variability in these sources, and for the discovery of
transient sources such as supernovae, gamma-ray bursts and minor planets.Comment: 1 latex file and 9 figures The paper is accepted by PAS
The sky brightness and transparency in i-band at Dome A, Antarctica
The i-band observing conditions at Dome A on the Antarctic plateau have been
investigated using data acquired during 2008 with the Chinese Small Telescope
ARray. The sky brightness, variations in atmospheric transparency, cloud cover,
and the presence of aurorae are obtained from these images. The median sky
brightness of moonless clear nights is 20.5 mag arcsec^{-2} in the SDSS
band at the South Celestial Pole (which includes a contribution of about 0.06
mag from diffuse Galactic light). The median over all Moon phases in the
Antarctic winter is about 19.8 mag arcsec^{-2}. There were no thick clouds in
2008. We model contributions of the Sun and the Moon to the sky background to
obtain the relationship between the sky brightness and transparency. Aurorae
are identified by comparing the observed sky brightness to the sky brightness
expected from this model. About 2% of the images are affected by relatively
strong aurorae.Comment: There are 1 Latex file and 14 figures accepted by A
Data Release of the AST3-2 Automatic Survey from Dome A, Antarctica
AST3-2 is the second of the three Antarctic Survey Telescopes, aimed at
wide-field time-domain optical astronomy. It is located at Dome A, Antarctica,
which is by many measures the best optical astronomy site on the Earth's
surface. Here we present the data from the AST3-2 automatic survey in 2016 and
the photometry results. The median 5 limiting magnitude in -band is
17.8 mag and the light curve precision is 4 mmag for bright stars. The data
release includes photometry for over 7~million stars, from which over 3,500
variable stars were detected, with 70 of them newly discovered. We classify
these new variables into different types by combining their light curve
features with stellar properties from surveys such as StarHorse.Comment: 16 pages, 20 figures, accepted for publication in MNRA
PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA: RESULTS FROM THE 2010 OBSERVING SEASON
We present results from a season of observations with the Chinese Small
Telescope ARray (CSTAR), obtained over 183 days of the 2010 Antarctic winter.
We carried out high-cadence time-series aperture photometry of 20,000 stars
with i<15.3 mag located in a 23 square-degree region centered on the south
celestial pole.
We identified 188 variable stars, including 67 new objects relative to our
2008 observations, thanks to broader synoptic coverage, a deeper magnitude
limit and a larger field of view.
We used the photometric data set to derive site statistics from Dome A. Based
on two years of observations, we find that extinction due to clouds at this
site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time,
respectively.Comment: Accepted for publication in the Astronomical Journal. Light curves
and finding charts of all variable stars will be made available at
http://casdc.china-vo.org/data/csta
- …