19,615 research outputs found
Real-time Bidding for Online Advertising: Measurement and Analysis
The real-time bidding (RTB), aka programmatic buying, has recently become the
fastest growing area in online advertising. Instead of bulking buying and
inventory-centric buying, RTB mimics stock exchanges and utilises computer
algorithms to automatically buy and sell ads in real-time; It uses per
impression context and targets the ads to specific people based on data about
them, and hence dramatically increases the effectiveness of display
advertising. In this paper, we provide an empirical analysis and measurement of
a production ad exchange. Using the data sampled from both demand and supply
side, we aim to provide first-hand insights into the emerging new impression
selling infrastructure and its bidding behaviours, and help identifying
research and design issues in such systems. From our study, we observed that
periodic patterns occur in various statistics including impressions, clicks,
bids, and conversion rates (both post-view and post-click), which suggest
time-dependent models would be appropriate for capturing the repeated patterns
in RTB. We also found that despite the claimed second price auction, the first
price payment in fact is accounted for 55.4% of total cost due to the
arrangement of the soft floor price. As such, we argue that the setting of soft
floor price in the current RTB systems puts advertisers in a less favourable
position. Furthermore, our analysis on the conversation rates shows that the
current bidding strategy is far less optimal, indicating the significant needs
for optimisation algorithms incorporating the facts such as the temporal
behaviours, the frequency and recency of the ad displays, which have not been
well considered in the past.Comment: Accepted by ADKDD '13 worksho
Safe Screening With Variational Inequalities and Its Application to LASSO
Sparse learning techniques have been routinely used for feature selection as
the resulting model usually has a small number of non-zero entries. Safe
screening, which eliminates the features that are guaranteed to have zero
coefficients for a certain value of the regularization parameter, is a
technique for improving the computational efficiency. Safe screening is gaining
increasing attention since 1) solving sparse learning formulations usually has
a high computational cost especially when the number of features is large and
2) one needs to try several regularization parameters to select a suitable
model. In this paper, we propose an approach called "Sasvi" (Safe screening
with variational inequalities). Sasvi makes use of the variational inequality
that provides the sufficient and necessary optimality condition for the dual
problem. Several existing approaches for Lasso screening can be casted as
relaxed versions of the proposed Sasvi, thus Sasvi provides a stronger safe
screening rule. We further study the monotone properties of Sasvi for Lasso,
based on which a sure removal regularization parameter can be identified for
each feature. Experimental results on both synthetic and real data sets are
reported to demonstrate the effectiveness of the proposed Sasvi for Lasso
screening.Comment: Accepted by International Conference on Machine Learning 201
Unsupervised Generative Modeling Using Matrix Product States
Generative modeling, which learns joint probability distribution from data
and generates samples according to it, is an important task in machine learning
and artificial intelligence. Inspired by probabilistic interpretation of
quantum physics, we propose a generative model using matrix product states,
which is a tensor network originally proposed for describing (particularly
one-dimensional) entangled quantum states. Our model enjoys efficient learning
analogous to the density matrix renormalization group method, which allows
dynamically adjusting dimensions of the tensors and offers an efficient direct
sampling approach for generative tasks. We apply our method to generative
modeling of several standard datasets including the Bars and Stripes, random
binary patterns and the MNIST handwritten digits to illustrate the abilities,
features and drawbacks of our model over popular generative models such as
Hopfield model, Boltzmann machines and generative adversarial networks. Our
work sheds light on many interesting directions of future exploration on the
development of quantum-inspired algorithms for unsupervised machine learning,
which are promisingly possible to be realized on quantum devices.Comment: 11 pages, 12 figures (not including the TNs) GitHub Page:
https://congzlwag.github.io/UnsupGenModbyMPS
- …