13,937 research outputs found

    Weak Decays of Doubly Heavy Baryons: the 1/2β†’1/21/2\to 1/2 case

    Full text link
    Very recently, the LHCb collaboration has observed in the final state Ξ›c+Kβˆ’Ο€+Ο€+\Lambda_c^+ K^-\pi^+\pi^+ a resonant structure that is identified as the doubly-charmed baryon Ξcc++\Xi_{cc}^{++}. Inspired by this observation, we investigate the weak decays of doubly heavy baryons Ξcc++\Xi_{cc}^{++}, Ξcc+\Xi_{cc}^{+}, Ξ©cc+\Omega_{cc}^{+}, Ξbc(β€²)+\Xi_{bc}^{(\prime)+}, Ξbc(β€²)0\Xi_{bc}^{(\prime)0}, Ξ©bc(β€²)0\Omega_{bc}^{(\prime)0}, Ξbb0\Xi_{bb}^{0}, Ξbbβˆ’\Xi_{bb}^{-} and Ξ©bbβˆ’\Omega_{bb}^{-} and focus on the decays into spin 1/21/2 baryons in this paper. At the quark level these decay processes are induced by the cβ†’d/sc\to d/s or bβ†’u/cb\to u/c transitions, and the two spectator quarks can be viewed as a scalar or axial vector diquark. We first derive the hadronic form factors for these transitions in the light-front approach and then apply them to predict the partial widths for the semi-leptonic and non-leptonic decays of doubly heavy baryons. We find that a number of decay channels are sizable and can be examined in future measurements at experimental facilities like LHC, Belle II and CEPC.Comment: 40 pages, 4 figures, to appear in EPJ

    Efficient two-step entanglement concentration for arbitrary W states

    Full text link
    We present two two-step practical entanglement concentration protocols (ECPs) for concentrating an arbitrary three-particle less-entangled W state into a maximally entangled W state assisted with single photons. The first protocol uses the linear optics and the second protocol adopts the cross-Kerr nonlinearity to perform the protocol. In the first protocol, based on the post-selection principle, three parties say Alice, Bob and Charlie in different distant locations can obtain the maximally entangled W state from the arbitrary less-entangled W state with a certain success probability. In the second protocol, it dose not require the parties to posses the sophisticated single-photon detectors and the concentrated photon pair can be retained after performing this protocol successfully. Moreover, the second protocol can be repeated to get a higher success probability. Both protocols may be useful in practical quantum information applications.Comment: 10 pages, 4 figure

    Competing electronic orders on Kagome lattices at van Hove filling

    Full text link
    The electronic orders in Hubbard models on a Kagome lattice at van Hove filling are of intense current interest and debate. We study this issue using the singular-mode functional renormalization group theory. We discover a rich variety of electronic instabilities under short range interactions. With increasing on-site repulsion UU, the system develops successively ferromagnetism, intra unit-cell antiferromagnetism, and charge bond order. With nearest-neighbor Coulomb interaction VV alone (U=0), the system develops intra-unit-cell charge density wave order for small VV, s-wave superconductivity for moderate VV, and the charge density wave order appears again for even larger VV. With both UU and VV, we also find spin bond order and chiral dx2βˆ’y2+idxyd_{x^2 - y^2} + i d_{xy} superconductivity in some particular regimes of the phase diagram. We find that the s-wave superconductivity is a result of charge density wave fluctuations and the squared logarithmic divergence in the pairing susceptibility. On the other hand, the d-wave superconductivity follows from bond order fluctuations that avoid the matrix element effect. The phase diagram is vastly different from that in honeycomb lattices because of the geometrical frustration in the Kagome lattice.Comment: 8 pages with 9 color figure
    • …
    corecore