18,559 research outputs found

    Soliton interaction in a fiber ring laser

    Full text link
    We have experimentally investigated the soliton interaction in a passively mode-locked fiber ring laser and revealed the existence of three types of strong soliton interaction: a global type of soliton interaction caused by the existence of unstable CW components; a local type of soliton interaction mediated through the radiative dispersive waves; and the direct soliton interaction. We found that the appearance of the various soliton operation modes observed in the passively mode locked fiber soliton lasers are the direct consequences of these three types of soliton interaction. The soliton interaction in the laser is further numerically simulated based on a pulse tracing technique. The numerical simulations confirmed the existence of the dispersive wave mediated soliton interaction and the direct soliton interaction. Furthermore, it was shown that the resonant dispersive waves mediated soliton interaction in the laser always has the consequence of causing random irregular relative soliton movement, and the experimentally observed states of bound solitons are caused by the direct soliton interaction. In particular, as the solitons generated in the laser could have a profile with long tails, the direct soliton interaction could extend to a soliton separation that is larger than 5 times of the soliton pulse width

    Bound states of gain-guided solitons in a passively mode-locked fiber laser

    Full text link
    We report on the observation of bound states of gain-guided solitons (GGSs) in a dispersion-managed erbium-doped fiber laser operating in the normal net cavity dispersion regime. Despite of the fact that the GGS is a chirped soliton and there is strong pulse stretching and compression along the cavity in the laser, the bound solitons observed have a fixed pulse separation, which is invariant to the pump strength change. Numerical simulation confirmed the experimental observations

    Derangement Polynomials and Excedances of Type B

    Full text link
    Adopting the definition of excedances of type B due to Brenti, we give a type B analogue of the q-derangement polynomials. The connection between q-derangement polynomials and Eulerian polynomials naturally extends to the type B case. Based on this relation, we derive some basic properties of the q-derangement polynomials of type B, including the generating function formula, the Sturm sequence property, and the asymptotic normal distribution. We also show that the q-derangement polynomials are almost symmetric in the sense that the coefficients possess the spiral property.Comment: 18 page

    Direct ultrashort pulse generation by intracavity nonlinear compression

    Full text link
    Direct generation of ultrashort, transform-limited pulses in a laser resonator is observed theoretically and experimentally. This constitutes a new type of ultrashort pulse generation in mode-locked lasers: in contrast to the well-known solitons (hyperbolic secant like), dispersion-managed solitons (Gaussian-like), and parabolic pulses plus external compression, ultrashort pulse solutions to the nonlinear wave equations that describe pulse evolution in the laser cavity are observed. Stable ultrashort, transform-limited pulses exist with optical spectrum broader than the gain bandwidth of the amplifier, and this has practical application for other lasers

    Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion

    Full text link
    We report on the observation of various bound states of dispersion-managed (DM) solitons in a passively mode-locked Erbium-doped fiber ring laser at near zero net cavity group velocity dispersion (GVD). The generated DM solitons are characterized by their Gaussian-like spectral profile with no sidebands, which is distinct from those of the conventional solitons generated in fiber lasers with large net negative cavity GVD, of the parabolic pulses generated in fiber lasers with positive cavity GVD and negligible gain saturation and bandwidth limiting, and of the gain-guided solitons generated in fiber lasers with large positive cavity GVD. Furthermore, bound states of DM solitons with fixed soliton separations are also observed. We show that these bound solitons can function as a unit to form bound states themselves. Numerical simulations verified our experimental observations

    Self-started unidirectional operation of a fiber ring soliton laser without an isolator

    Full text link
    We demonstrate self-started mode-locking in an Erbium-doped fiber ring laser by using the nonlinear polarization rotation mode-locking technique but without an isolator in cavity. We show that due to the intrinsic effective nonlinearity discrimination of the mode-locked pulse propagating along different cavity directions, the soliton operation of the laser is always unidirectional, and its features have no difference to that of the unidirectional lasers with an isolator in cavity

    Observation of high-order polarization-locked vector solitons in a fiber laser

    Full text link
    We report on the experimental observation of a novel type of polarization locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by that not only the two orthogonally polarized soliton components are phase locked, but also one of the components has a double-humped intensity profile. Multiple such phase-locked high order vector solitons with identical soliton parameters and harmonic mode-locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in fiber lasers.Comment: 15 pages,5 figures, Accepted by PR

    Dark Pulse Emission of A Fiber Laser

    Full text link
    We report on the dark pulse emission of an all-normal dispersion erbium-doped fiber laser with a polarizer in cavity. We found experimentally that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations we interpret the dark pulse formation in the laser as a result of dark soliton shaping.Comment: 16 page

    Dynamics in spinor condensates controlled by a microwave dressing field

    Full text link
    We experimentally study spin dynamics in a sodium antiferromagnetic spinor condensate with off-resonant microwave pulses. In contrast to a magnetic field, a microwave dressing field enables us to explore rich spin dynamics under the influence of a negative net quadratic Zeeman shift qnetq_{\rm net}. We find an experimental signature to determine the sign of qnetq_{\rm net}, and observe harmonic spin population oscillations at every qnetq_{\rm net} except near each separatrix in phase space where spin oscillation period diverges. In the negative and positive qnetq_{\rm net} regions, we also observe a remarkably different relationship between each separatrix and the magnetization. Our data confirms an important prediction derived from the mean-field theory: spin-mixing dynamics in spin-1 condensates substantially depends on the sign of the ratio of qnetq_{\rm net} and the spin-dependent interaction energy. This work may thus be the first to use only one atomic species to reveal mean-field spin dynamics, especially the separatrix, which are predicted to appear differently in spin-1 antiferromagnetic and ferromagnetic spinor condensates

    Quantum quench and non-equilibrium dynamics in lattice-confined spinor condensates

    Full text link
    We present an experimental study on non-equilibrium dynamics of a spinor condensate after it is quenched across a superfluid to Mott insulator (MI) phase transition in cubic lattices. Intricate dynamics consisting of spin-mixing oscillations at multiple frequencies are observed in time evolutions of the spinor condensate localized in deep lattices after the quantum quench. Similar spin dynamics also appear after spinor gases in the MI phase are suddenly moved away from their ground states via quenching magnetic fields. We confirm these observed spectra of spin-mixing dynamics can be utilized to reveal atom number distributions of an inhomogeneous system, and to study transitions from two-body to many-body dynamics. Our data also imply the non-equilibrium dynamics depend weakly on the quench speed but strongly on the lattice potential. This enables precise measurements of the spin-dependent interaction, a key parameter determining the spinor physics
    • …
    corecore