107,768 research outputs found

    A Generalization of Mathieu Subspaces to Modules of Associative Algebras

    Full text link
    We first propose a generalization of the notion of Mathieu subspaces of associative algebras A\mathcal A, which was introduced recently in [Z4] and [Z6], to A\mathcal A-modules M\mathcal M. The newly introduced notion in a certain sense also generalizes the notion of submodules. Related with this new notion, we also introduce the sets σ(N)\sigma(N) and τ(N)\tau(N) of stable elements and quasi-stable elements, respectively, for all RR-subspaces NN of A\mathcal A-modules M\mathcal M, where RR is the base ring of A\mathcal A. We then prove some general properties of the sets σ(N)\sigma(N) and τ(N)\tau(N). Furthermore, examples from certain modules of the quasi-stable algebras [Z6], matrix algebras over fields and polynomial algebras are also studied.Comment: A new case has been added; some mistakes and misprints have been corrected. Latex, 31 page

    Is the CMB asymmetry due to the kinematic dipole?

    Full text link
    Parity violation found in the Cosmic Microwave Background (CMB) radiation is a crucial clue for the non-standard cosmological model or the possible contamination of various foreground residuals and/or calibration of the CMB data sets. In this paper, we study the directional properties of the CMB parity asymmetry by excluding the m=0m=0 modes in the definition of parity parameters. We find that the preferred directions of the parity parameters coincide with the CMB kinematic dipole, which implies that the CMB parity asymmetry may be connected with the possible contamination of the residual dipole component. We also find that such tendency is not only localized at l=2,3l=2,3, but in the extended multipole ranges up to l∼22l\sim 22.Comment: 17 pages, 5 figures, 2 tables, improved version, ApJ accepte

    Impact of pairing correlations on the orientation of the nuclear

    Full text link
    For the first time, the tilted axis cranking covariant density functional theory with pairing correlations has been formulated and implemented in a fully self-consistent and microscopic way to investigate the evolution of the spin axis and the pairing effects in rotating triaxial nuclei. The measured energy spectrum and transition probabilities for the Nd-135 yrast band are reproduced well without any ad hoc renormalization factors when pairing effects are taken into account. A transition from collective to chiral rotation has been demonstrated. It is found that pairing correlations introduce additional admixtures in the single-particle orbitals, and, thus, influence the structure of tilted axis rotating nuclei by reducing the magnitude of the proton and neutron angular momenta while merging their direction.Comment: 13 pages, 5 figure

    Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation

    Full text link
    Magnetic rotation and antimagnetic rotation are exotic rotational phenomena observed in weakly deformed or near-spherical nuclei, which are respectivelyinterpreted in terms of the shears mecha-nism and two shearslike mechanism. Since their observations, magnetic rotation and antimagnetic rotation phenomena have been mainly investigated in the framework of tilted axis cranking based on the pairing plus quadrupole model. For the last decades, the covariant density functional theory and its extension have been proved to be successful in describing series of nuclear ground-states and excited states properties, including the binding energies, radii, single-particle spectra, resonance states, halo phenomena, magnetic moments, magnetic rotation, low-lying excitations, shape phase transitions, collective rotation and vibrations, etc. This review will mainly focus on the tilted axis cranking covariant density functional theory and its application for the magnetic rotation and antimagnetic rotation phenomena.Comment: 53 pages, 19 figure

    New parametrization for the nuclear covariant energy density functional with point-coupling interaction

    Full text link
    A new parametrization PC-PK1 for the nuclear covariant energy density functional with nonlinear point-coupling interaction is proposed by fitting to observables for 60 selected spherical nuclei, including the binding energies, charge radii and empirical pairing gaps. The success of PC-PK1 is illustrated in its description for infinite nuclear matter and finite nuclei including the ground-state and low-lying excited states. Particularly, PC-PK1 improves the description for isospin dependence of binding energy along either the isotopic or the isotonic chains, which makes it more reliable for application in exotic nuclei. The predictive power of PC-PK1 is also illustrated for the nuclear low-lying excitation states in a five-dimensional collective Hamiltonian in which the parameters are determined by constrained calculations for triaxial shapes.Comment: 32 pages, 12 figures, 4 tables, accepted by Phys. Rev.

    Possible discovery of the r-process characteristics in the abundances of metal-rich barium stars

    Full text link
    We study the abundance distributions of a sample of metal-rich barium stars provided by Pereira et al. (2011) to investigate the s- and r-process nucleosynthesis in the metal-rich environment. We compared the theoretical results predicted by a parametric model with the observed abundances of the metal-rich barium stars. We found that six barium stars have a significant r-process characteristic, and we divided the barium stars into two groups: the r-rich barium stars (Cr>5.0C_r>5.0, [La/Nd]\,<0<0) and normal barium stars. The behavior of the r-rich barium stars seems more like that of the metal-poor r-rich and CEMP-r/s stars. We suggest that the most possible formation mechanism for these stars is the s-process pollution, although their abundance patterns can be fitted very well when the pre-enrichment hypothesis is included. The fact that we can not explain them well using the s-process nucleosynthesis alone may be due to our incomplete knowledge on the production of Nd, Eu, and other relevant elements by the s-process in metal-rich and super metal-rich environments (see details in Pereira et al. 2011).Comment: 5 pages, 5 figures, accepted for publication in A&

    Antimagnetic Rotation Band in Nuclei: A Microscopic Description

    Full text link
    Covariant density functional theory and the tilted axis cranking method are used to investigate antimagnetic rotation (AMR) in nuclei for the first time in a fully self-consistent and microscopic way. The experimental spectrum as well as the B(E2) values of the recently observed AMR band in 105Cd are reproduced very well. This gives a further strong hint that AMR is realized in specific bands in nuclei.Comment: 10 pages, 4 figure
    • …
    corecore