87,376 research outputs found
Spatial Aggregation: Theory and Applications
Visual thinking plays an important role in scientific reasoning. Based on the
research in automating diverse reasoning tasks about dynamical systems,
nonlinear controllers, kinematic mechanisms, and fluid motion, we have
identified a style of visual thinking, imagistic reasoning. Imagistic reasoning
organizes computations around image-like, analogue representations so that
perceptual and symbolic operations can be brought to bear to infer structure
and behavior. Programs incorporating imagistic reasoning have been shown to
perform at an expert level in domains that defy current analytic or numerical
methods. We have developed a computational paradigm, spatial aggregation, to
unify the description of a class of imagistic problem solvers. A program
written in this paradigm has the following properties. It takes a continuous
field and optional objective functions as input, and produces high-level
descriptions of structure, behavior, or control actions. It computes a
multi-layer of intermediate representations, called spatial aggregates, by
forming equivalence classes and adjacency relations. It employs a small set of
generic operators such as aggregation, classification, and localization to
perform bidirectional mapping between the information-rich field and
successively more abstract spatial aggregates. It uses a data structure, the
neighborhood graph, as a common interface to modularize computations. To
illustrate our theory, we describe the computational structure of three
implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the
spatial aggregation generic operators by mixing and matching a library of
commonly used routines.Comment: See http://www.jair.org/ for any accompanying file
Recommended from our members
Modelling human behaviours and reactions under dangerous environment
This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions of different people; capturing different motion postures by the Eagle Digital System; establishing 3D character animation models; establishing 3D models for the scene; planning the scenario and the contents; and programming within Virtools (TM) Dev. Programming within Virtools (TM) Dev is subdivided into modeling dangerous events, modeling character's perceptions, modeling character's decision making, modeling character's movements, modeling character's interaction with environment and setting up the virtual cameras. The real-time simulation of human reactions in hazardous environments is invaluable in military defense, fire escape, rescue operation planning, traffic safety studies, and safety planning in chemical factories, the design of buildings, airplanes, ships and trains. Currently, human motion modeling can be realized through established technology, whereas to integrate perception and intelligence into virtual human's motion is still a huge undertaking. The challenges here are the synchronization of motion and intelligence, the accurate modeling of human's vision, smell, touch and hearing, the diversity and effects of emotion and personality in decision making. There are three types of software platforms which could be employed to realize the motion and intelligence within one system, and their advantages and disadvantages are discussed
Coexistence of full which-path information and interference in Wheelers delayed choice experiment with photons
We present a computer simulation model that is a one-to-one copy of an
experimental realization of Wheeler's delayed choice experiment that employs a
single photon source and a Mach-Zehnder interferometer composed of a 50/50
input beam splitter and a variable output beam splitter with adjustable
reflection coefficient (V. Jacques {\sl et al.}, Phys. Rev. Lett. 100,
220402 (2008)). For , experimentally measured values of the
interference visibility and the path distinguishability , a parameter
quantifying the which-path information WPI, are found to fulfill the
complementary relation , thereby allowing to obtain partial WPI
while keeping interference with limited visibility. The simulation model that
is solely based on experimental facts, that satisfies Einstein's criterion of
local causality and that does not rely on any concept of quantum theory or of
probability theory, reproduces quantitatively the averages calculated from
quantum theory. Our results prove that it is possible to give a particle-only
description of the experiment, that one can have full WPI even if D=0, V=1 and
therefore that the relation cannot be regarded as quantifying
the notion of complementarity.Comment: Physica E, in press; see also http://www.compphys.ne
All-optical generation and detection of sub-picosecond ac spin current pulses in GaAs
Sub-picosecond ac spin current pulses are generated optically in GaAs bulk
and quantum wells at room temperature and 90K through quantum interference
between one-photon and two-photon absorptions driven by two phase-locked
ultrafast laser pulses that are both circularly polarized. The dynamics of the
current pulses are detected optically by monitoring in real time and real space
nanoscale motion of electrons with high-resolution pump-probe techniques.Comment: 5 pages, 5 figure
Finding the Origin of the Pioneer Anomaly
Analysis of radio-metric tracking data from the Pioneer 10/11 spacecraft at
distances between 20 - 70 astronomical units (AU) from the Sun has consistently
indicated the presence of an anomalous, small, constant Doppler frequency
drift. The drift can be interpreted as being due to a constant acceleration of
a_P= (8.74 \pm 1.33) x 10^{-8} cm/s^2 directed towards the Sun. Although it is
suspected that there is a systematic origin to the effect, none has been found.
As a result, the nature of this anomaly has become of growing interest. Here we
present a concept for a deep-space experiment that will reveal the origin of
the discovered anomaly and also will characterize its properties to an accuracy
of at least two orders of magnitude below the anomaly's size. The proposed
mission will not only provide a significant accuracy improvement in the search
for small anomalous accelerations, it will also determine if the anomaly is due
to some internal systematic or has an external origin. A number of critical
requirements and design considerations for the mission are outlined and
addressed. If only already existing technologies were used, the mission could
be flown as early as 2010.Comment: 21 SS pages, 4+1 figures. final changes for publicatio
Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes
Semiconducting carbon nanotubes under high electric field stress (~10 V/um)
display a striking, exponential current increase due to avalanche generation of
free electrons and holes. Unlike in other materials, the avalanche process in
such 1D quantum wires involves access to the third sub-band, is insensitive to
temperature, but strongly dependent on diameter ~exp(-1/d^2). Comparison with a
theoretical model yields a novel approach to obtain the inelastic optical
phonon emission length, L_OP,ems ~ 15d nm. The combined results underscore the
importance of multi-band transport in 1D molecular wires
Thermomechanical Characterization And Modeling For TSV Structures
Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente
MicroSQUID Force microscopy in a dilution refrigerator
We present a new generation of a scanning MicroSQUID microscope operating in
an inverted dilution refrigerator. The MicroSQUIDs have a size of 1.21$ \
\mum\textsuperscript{2} and a magnetic flux sensitivity of 120 \mu\Phi_{0} /
\sqrt{\textrm{Hz}}550^{-6} \ \Phi_{0} /
\sqrt{\textrm{Hz}} \ \mu \textrm{G}/ \sqrt{\textrm{Hz}}\mu$m and a coarse displacement of 5 mm in x
and y direction has been implemented. The MicroSQUID-to-sample distance is
regulated using a tuning fork based force detection. A MicroSQUID-to-sample
distance of 420 nm has been obtained. The reliable knowledge of this distance
is necessary to obtain a trustworthy estimate of the absolute value of the
superconducting penetration depth. An outlook will be given on the ongoing
direction of development
- …