92,984 research outputs found

    Many-core compiler fuzzing

    Get PDF
    We address the compiler correctness problem for many-core systems through novel applications of fuzz testing to OpenCL compilers. Focusing on two methods from prior work, random differential testing and testing via equivalence modulo inputs (EMI), we present several strategies for random generation of deterministic, communicating OpenCL kernels, and an injection mechanism that allows EMI testing to be applied to kernels that otherwise exhibit little or no dynamically-dead code. We use these methods to conduct a large, controlled testing campaign with respect to 21 OpenCL (device, compiler) configurations, covering a range of CPU, GPU, accelerator, FPGA and emulator implementations. Our study provides independent validation of claims in prior work related to the effectiveness of random differential testing and EMI testing, proposes novel methods for lifting these techniques to the many-core setting and reveals a significant number of OpenCL compiler bugs in commercial implementations

    A New Kind of Uniformly Accelerated Reference Frames

    Full text link
    A new kind of uniformly accelerated reference frames with a line-element different from the M{\o}ller and Rindler ones is presented, in which every observer at x,y,z=x, y, z=consts. has the same constant acceleration. The laws of mechanics are checked in the new kind of frames. Its thermal property is studied. The comparison with the M{\o}ller and Rindler uniform accelerated reference frames is also made.Comment: 10 pages, 2 figures. to appear in Int. J. Mod. Phys.

    Radio Variability of Sagittarius A* - A 106 Day Cycle

    Get PDF
    We report the presence of a 106-day cycle in the radio variability of Sgr A* based on an analysis of data observed with the Very Large Array (VLA) over the past 20 years. The pulsed signal is most clearly seen at 1.3 cm with a ratio of cycle frequency to frequency width f/Delta_f= 2.2+/-0.3. The periodic signal is also clearly observed at 2 cm. At 3.6 cm the detection of a periodic signal is marginal. No significant periodicity is detected at both 6 and 20 cm. Since the sampling function is irregular we performed a number of tests to insure that the observed periodicity is not the result of noise. Similar results were found for a maximum entropy method and periodogram with CLEAN method. The probability of false detection for several different noise distributions is less than 5% based on Monte Carlo tests. The radio properties of the pulsed component at 1.3 cm are spectral index alpha ~ 1.0+/- 0.1 (for S nu^alpha), amplitude Delta S=0.42 +/- 0.04 Jy and characteristic time scale Delta t_FWHM ~ 25 +/- 5 days. The lack of VLBI detection of a secondary component suggests that the variability occurs within Sgr A* on a scale of ~5 AU, suggesting an instability of the accretion disk.Comment: 14 Pages, 3 figures. ApJ Lett 2000 accepte

    Evolution of magnetic component in Yang-Mills condensate dark energy models

    Full text link
    The evolution of the electric and magnetic components in an effective Yang-Mills condensate dark energy model is investigated. If the electric field is dominant, the magnetic component disappears with the expansion of the Universe. The total YM condensate tracks the radiation in the earlier Universe, and later it becomes wy∼−1w_y\sim-1 thus is similar to the cosmological constant. So the cosmic coincidence problem can be avoided in this model. However, if the magnetic field is dominant, wy>1/3w_y>1/3 holds for all time, suggesting that it cannot be a candidate for the dark energy in this case.Comment: 12 pages, 4 figures, minor typos correcte

    Polarizing primordial gravitational waves by parity violation

    Full text link
    We study primordial gravitational waves (PGWs) in the Horava-Lifshitz (HL) theory of quantum gravity, in which high-order spatial derivative operators, including the ones violating parity, generically appear in order for the theory to be power-counting renormalizable and ultraviolet (UV) complete. Because of both parity violation and non-adiabatic evolution of the modes due to a modified dispersion relationship, a large polarization of PGWs becomes possible, and it could be well within the range of detection of the BB, TB and EB power spectra of the forthcoming cosmic microwave background (CMB) observations.Comment: revtex4, 3 figures. Phys. Rev. D87, 103512 (2013

    Mapping the Dirac point in gated bilayer graphene

    Full text link
    We have performed low temperature scanning tunneling spectroscopy measurements on exfoliated bilayer graphene on SiO2. By varying the back gate voltage we observed a linear shift of the Dirac point and an opening of a band gap due to the perpendicular electric field. In addition to observing a shift in the Dirac point, we also measured its spatial dependence using spatially resolved scanning tunneling spectroscopy. The spatial variation of the Dirac point was not correlated with topographic features and therefore we attribute its shift to random charged impurities.Comment: 3 pages, 3 figure

    Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors

    Get PDF
    We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors
    • …
    corecore