227,334 research outputs found

    Investigation of split injection in a single cylinder optical diesel engine

    Get PDF
    SAE paper 2010-01-0605, Copyright © 2010 SAE International. This paper is posted on this site with permission from SAE International, and is for viewing only. Further use and distribution of this paper is not permitted without permission from SAE.Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxides (NOx) and particulate matters’ (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes which can have a great potential for both low soot and low NOx. In order to achieve this, different injection strategies have been investigated. This study investigates the effects of split injection strategies with high levels of Exhaust Gas Recirculation (EGR) on combustion performance and emissions in a single cylinder direct injection optical diesel engine. The investigation is focused on the effects of injection timing of split injection strategies. A Ricardo Hydra single cylinder optical engine was used in which conventional experimental methods like cylinder pressure data, heat release analysis and exhaust emissions analysis were applied. Optical techniques like direct spray and combustion visualization were applied by means of a high speed imaging system with a copper vapor laser illumination system and a high-speed two-color system was applied to obtain in-cylinder diesel combustion temperature and soot measurements distributions

    Nonequilibrium spin-transfer torque in SFNFS junctions

    Full text link
    We report theoretical results for the nonequilibrium spin current and spin-transfer torque in voltage-biased SFNFS Josephson structures. The subharmonic gap structures and high voltage asymptotic behaviors of the dc and ac components of the spin current are analyzed and related to the spin-dependent inelastic scattering of quasiparticles at both F layers.Comment: minor changes, published versio

    Towards understanding the probability of 0+0^+ ground states in even-even many-body systems

    Get PDF
    For single-jj shells with j=7/2,9/2j={7/2}, {9/2} and 11/2, we relate the large probability of I+I^+ ground states to the largest (smallest) coefficients αI(vβ)J=<nvβI\alpha^J_{I(v \beta)} = <nv \beta I | AJAJnvβI>A^{J \dagger} \cdot A^J | n v\beta I>, where nn is the particle number, vv is the seniority, β\beta is an additional quantum number, and II is the angular momentum of the state. Interesting regularities of the probabilities of I+I^+ ground states are noticed and discussed for 4-particle systems. Several counter examples of the 0+0^+ ground state (0GS) predominance are noticed for the first time.Comment: 5 pages, 1 figure. Phys. Rev. C64, in pres

    A Generalization of Mathieu Subspaces to Modules of Associative Algebras

    Full text link
    We first propose a generalization of the notion of Mathieu subspaces of associative algebras A\mathcal A, which was introduced recently in [Z4] and [Z6], to A\mathcal A-modules M\mathcal M. The newly introduced notion in a certain sense also generalizes the notion of submodules. Related with this new notion, we also introduce the sets σ(N)\sigma(N) and τ(N)\tau(N) of stable elements and quasi-stable elements, respectively, for all RR-subspaces NN of A\mathcal A-modules M\mathcal M, where RR is the base ring of A\mathcal A. We then prove some general properties of the sets σ(N)\sigma(N) and τ(N)\tau(N). Furthermore, examples from certain modules of the quasi-stable algebras [Z6], matrix algebras over fields and polynomial algebras are also studied.Comment: A new case has been added; some mistakes and misprints have been corrected. Latex, 31 page

    Evidence for very strong electron-phonon coupling in YBa_{2}Cu_{3}O_{6}

    Full text link
    From the observed oxygen-isotope shift of the mid-infrared two-magnon absorption peak of YBa2_{2}Cu3_{3}O6_{6}, we evaluate the oxygen-isotope effect on the in-plane antiferromagnetic exchange energy JJ. The exchange energy JJ in YBa2_{2}Cu3_{3}O6_{6} is found to decrease by about 0.9% upon replacing 16^{16}O by 18^{18}O, which is slightly larger than that (0.6%) in La2_{2}CuO4_{4}. From the oxygen-isotope effects, we determine the lower limit of the polaron binding energy, which is about 1.7 eV for YBa2_{2}Cu3_{3}O6_{6} and 1.5 eV for La2_{2}CuO4_{4}, in quantitative agreement with angle-resolved photoemission data, optical conductivity data, and the parameter-free theoretical estimate. The large polaron binding energies in the insulating parent compounds suggest that electron-phonon coupling should also be strong in doped superconducting cuprates and may play an essential role in high-temperature superconductivity.Comment: 4 pages, 1 figur

    Complete time-dependent treatment of a three-level system

    Get PDF
    Both unitary evolution and the effects of dissipation and decoherence for a general three-level system are of widespread interest in quantum optics, molecular physics, and elsewhere. A previous paper presented a technique for solving the time-dependent operator equations involved but under certain restrictive conditions. We now extend our results to a general three-level system with arbitrary time-dependent Hamiltonians and Lindblad operators. Analytical handling of the SU(3) algebra of the eight operators involved leaves behind a set of coupled first-order differential equations for classical functions. Solution of this set gives a complete solution of the quantum problem, without having to invoke rotating-wave or other approximations. Numerical illustrations are given.Comment: 1 tar.gz file containing a Tex and four eps figure files; unzip with command gunzip RZPRA05.tar.g
    corecore