89 research outputs found

    Controlled Synthesis of Nano- and Micro-sized Carbon Materials and Their Uses

    Get PDF
    Nagasaki Symposium on Nano-Dynamics 2008 (NSND2008) 平成20年1月29日(火)於長崎大学 Invited Lectur

    Distinguishing tea stalks of Wuyuan green tea using hyperspectral imaging analysis and Convolutional Neural Network

    Get PDF
    Wuyuan green tea is a famous agricultural product in China and a product protected by national geo-graphical indications. The processed green tea also needs to remove impurities, such as stones, tea stalks, etc. However, tea stalks cannot be classified from Wuyuan green tea using photoelectric sorting and 2D image recognition technology since they have similar colors. This paper adopts hyperspectral imaging technology to solve the problem of inaccurate sorting caused by their similar colors. Green tea containing tea stalks was imaged using a visible and near-infrared camera with a wavelength of 400nm-1000nm. What’s more, Principal Component Analysis (PCA) was adopted to reduce the dimension of the col-lected hyperspectral image. And the Convolutional Neural Network (CNN) was used constructively to identify tea stalks in hyperspectral image, the CNN can automatically learn the corresponding features, avoid the complex feature extraction process. The experimental results showed that the recognition accuracy for tea stalks reaches 98.53%. The method has a high recognition rate and can meet the actual production requirements. After field testing, the selection rate is as high as 97.05%

    A general method to determine twinning elements

    Get PDF
    Based on the minimum shear criterion, a direct and simple method is proposed to calculate twinning elements from the experimentally determined twinning plane for Type I twins or the twinning direction for Type II twins. It is generic and applicable to any crystal structure

    Identification and Characterization of Alternative Promoters, Transcripts and Protein Isoforms of Zebrafish R2 Gene

    Get PDF
    Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5′ termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress

    Extensions of electron diffraction based techniques in crystallographic characterization

    No full text
    International audienceWith the advance of electron diffraction techniques in individual orientation analysis, traditional crystallographic characterization methods could be simplified, thus offering chances to develop some new approaches. In recent years, our group has devoted to working on possible extensions of the SEM and TEM based techniques for crystallographic analyses on a microstructure- and orientation-specific level. Several methods are illustrated in this paper, including the determination of dislocation type and Burgers vector without recourse to the traditional g.b invisibility condition, the identification of twinning mode and complete twinning elements for any crystal symmetry that requires minimum initial data input, and the characterization of specific interface plane or slip plane using only one sample observation plane instead of two perpendicular sample planes. These new extensions of characterization methods have proven to facilitate the related microstructural examinations

    A New Spherical Pulse Compressor Working with Degenerated "Whispering Gallery" Mode

    No full text
    This paper introduces a new design concept of spherical pulse compressor. The main characteristics of this new design can be described as: spherical storage cavity, degenerated “Whispering Gallery” mode and a compact mode launcher

    Claudin7b is required for the formation and function of inner ear in zebrafish

    Get PDF
    Zebrafish has become an excellent model for studying the development and function of inner ear. We report here a zebrafish line in which claudin 7b (cldn7b) locus is interrupted by a Tol2 transposon at its first intron. The homozygous mutants have enlarged otocysts, smaller or no otoliths, slowly formed semicircular canals, and insensitiveness to sound stimulation. These abnormal phenotypes and hearing loss of inner ear could be mostly rescued by injection of cldn7b-mRNA into one-cell stage homozygous mutant embryos. Mechanistically, cldn7b-deficiency interrupted the formation of apical junction complexes (AJCs) in otic epithelial cells of inner ear and the ion-homeostasis of endolymph, which then led to the loss of proper contact between otoliths and normally developed hair cells in utricle and saccule or aberrant mechanosensory transduction. Thus, Cldn7b is essential for the formation and proper function of inner ear through its unique role in keeping an initial integrity of otic epithelia during zebrafish embryogenesis

    Sleeping beauty transposon-mediated poly(A)-trapping and insertion mutagenesis in mouse embryonic stem cells

    No full text
    Saturation mutagenesis of all endogenous genes within the mouse genome remains a challenging task, although a plenty of gene-editing approaches are available for this purpose. Here, a poly(A)-trap vector was generated for insertion mutagenesis in mouse embryonic stem (mES) cells. This vector contains an expression cassette of neomycin (Neo)-resistant gene lacking a poly(A) signal and flanked by two inverted terminal repeats of the Sleeping Beauty (SB) transposon. The whole poly(A)-trap cassette can transpose into target TA dinucleotides, properly splice with endogenous genes and effectively interrupt the transcription of trapped genes in mES cells after transient induction of SB expression by doxycycline (DOX)-treatment at 1 g/ml, leading to the formation of multiple geneticin (G418)-resistant cell clones. In the first round of mutation screening, we identified six transposition events from 23 cell clones, including four inserted into an endogenous gene and two landed between endogenous genes. The abilities of self-renewal, totipotency, genetic stability and differentiation of syngap1(+/-) cells were not affected by DOX-treatment and G418-selection. These findings suggest that this SB transposon-mediated poly(A)-trap vector can be used as an alternative tool for a large-scale screening of mES cells with a gene mutation and for further generation of mutant mouse strains. Environ. Mol. Mutagen. 59:687-697, 2018. (c) 2018 Wiley Periodicals, Inc.</p
    corecore