15 research outputs found

    Chemical characterization of PM2.5 from a southern coastal city of China:applications of modeling and chemical tracers in demonstrationof regional transport

    Get PDF
    An intensive sampling campaign of airborne fine particles (PM2.5) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city

    Stable carbon isotopes and levoglucosan for PM2.5 elemental carbon sourceapportionments in the largest city of Northwest China

    No full text
    Stable carbon isotopes provide information on aerosol sources, but no extensive long-term studies of these isotopes have been conducted in China, and they have mainly been used for qualitative rather than quantitative purposes. Here, 24 h PM2.5 samples (n = 58) were collected from July 2008 to June 2009 at Xi'an, China. The concentrations of organic and elemental carbon (OC and EC), water-soluble OC, and the stable carbon isotope abundances of OC and EC were determined. In spring, summer, autumn and winter, the mean stable carbon isotope in OC (δ13COC) were −26.4 ± 0.6, −25.8 ± 0.7, −25.0 ± 0.6 and −24.4 ± 0.8‰, respectively, and the corresponding δ13CEC values were −25.5 ± 0.4, −25.5 ± 0.8, −25.2 ± 0.7 and −23.7 ± 0.6‰. Large δ13CEC and δ13COC values in winter can be linked to the burning coal for residential heating. Less biomass is burned during spring and summer than winter or fall (manifested in the levels of levoglucosan, i.e., 178, 85, 370, 935 ng m−3 in spring, summer, autumn, and winter), and the more negative δ13COC in the warmer months can be explained by the formation of secondary organic aerosols. A levoglucosan tracer method combined with an isotope mass balance analysis indicated that biomass burning accounted for 1.6–29.0% of the EC, and the mean value in winter (14.9 ± 7.5%) was 7 times higher than summer (2.1 ± 0.4%), with intermediate values of 6.1 ± 5.6 and 4.5 ± 2.4% in autumn and spring. Coal combustion accounted for 45.9 ± 23.1% of the EC overall, and the percentages were 63.0, 37.2, 36.7, and 33.7% in winter, autumn, summer and spring respectively. Motor vehicles accounted for 46.6 ± 26.5% of the annual EC, and these contributed over half (56.7–61.8%) of the EC in all seasons except winter. Correlations between motor vehicle-EC and coal combustion-EC with established source indicators (B(ghi)P and As) support the source apportionment results. This paper describes a simple and accurate method for apportioning the sources of EC, and the results may be beneficial for developing model simulations as well as controlling strategies in future

    Chemical composition and sources of PM2.5 and TSP collected at Qinghai Lake during summertime

    No full text
    PM2.5 and total suspended particulate (TSP) samples were collected from June to September 2010 at Qinghai Lake, northeastern Tibetan Plateau. The concentrations of major water-soluble ions, 10 elements, elemental carbons (ECs) and organic carbons (OCs) were quantified. Mass concentrations of PM2.5 and TSP were 21.27&plusmn;10.70&mu;gm-3 and 41.47&plusmn;20.25&mu;gm-3, respectively, and the mean ratio of PM2.5/TSP was 0.51. The greatest anion and cation in both PM2.5 and TSP samples were SO42- and Ca2+, respectively. Crustal elements, such as Ca, Fe and K, were the main elements in our aerosol samples, and their enrichment factors (EFs) were lower than 10. EFs for Pb, As, and Zn were greater than 10, indicating that they were influenced by anthropogenic sources. EC concentrations were 0.33&plusmn;0.17&mu;gm-3 and 0.47&plusmn;0.28&mu;gm-3, whereas OC concentrations were 1.49&plusmn;0.63&mu;gm-3 and 2.30&plusmn;0.95&mu;gm-3 in PM2.5 and TSP, respectively. Based on the calculated ratios of EC/TC and K+/EC, most of the ECs were found to be related to biomass burning emissions. Because of the pollution from local sources, the ratios of OC/EC were 4.77&plusmn;1.32 and 5.23&plusmn;1.39 in PM2.5 and TSP, respectively, which were lower than those of other remote sites. Salt particles produced by the salty lake reacted with acid gases and caused most of the nitrates and a small fraction of sulfate to be distributed in coarse mode; Cl deficit was also observed in our aerosol samples. Results of backward trajectories and correlation analysis show that the concentrations of SO42-, OCs, As, Pb, and Zn, were influenced by the long-distance transport from eastern China.</p

    Measuring and Modeling Black Carbon (BC) Contamination in the SE Tibetan Plateau,

    No full text
    Black carbon (BC) concentrations were measured in the southeast (SE) Tibetan Plateau along the valley of the Yarlung Tsangpo River during winter (between November, 2008 and January, 2009). The measured mean concentration (0.75 &mu;g m&minus;3) is significantly higher than the concentrations (0.004&ndash;0.34 &mu;g m&minus;3) measured in background and remote regions of the globe, indicating that Tibetan glaciers are contaminated by BC particles in the Plateau. Because BC particles play important roles for the climate in the Tibetan Plateau, the sources and causes of the BC contamination need to be understood and investigated. In this study, a mesocale dynamical model (WRF) with BC particle modules is applied for analyzing the measurement. The analysis suggests that the major sources for the contamination in the SE Plateau were mainly from the BC emissions in eastern Indian and Bangladesh. Because of the west prevailing winds, the heavy emissions in China had no significant effects on the SE Plateau in winter. Usually, the high altitude of the Himalayas acts a physical wall, inhibiting the transport of BC particles across the mountains to the plateau. This study, however, finds that the Yarlung Tsangpo River valley causes a &#39;leaking wall&#39;, whereby under certain meteorological conditions, BC particles are being transported up onto the glacier. This too causes variability of BC concentrations (ranging from 0.3 to 1.5 &mu;g m&minus;3) in a time scale of a few days. The analysis of the variability suggests that the &ldquo;leaking wall&rdquo; effect cannot occur when the prevailing winds were northwest winds, during which the BC transport along the valley of the Yarlung Tsangpo River was obstructed. As a result, large variability of BC concentration was observed due to the change of prevailing wind directions.</p

    Comparison and implications of PM2.5 carbon fractionsin different environments

    No full text
    The concentrations of PM2.5 carbon fractions in rural, urban, tunnel and remote environments were measured using the IMPROVE thermal optical reflectance (TOR) method. The highest OC1 and EC1 concentrations were found for tunnel samples, while the highest OC2, OC3, and OC4 concentrations were observed for urban winter samples, respectively. The lowest levels of most carbon fractions were found for remote samples. The percentage contributions of carbon fractions to total carbon (TC) were characterized by one peak (at rural and remote sites) and two peaks (at urban and tunnel sites) with different carbon fractions, respectively. The abundance of char in tunnel and urban environments was observed, which might partly be due to traffic-related tire-wear. Various percentages of optically scattering OC and absorbing EC fractions to TC were found in the four different environments. In addition, the contribution of heating carbon fractions (char and soot) indicated various warming effects per unit mass of TC. The ratios of OC/EC and char/soot at the sites were shown to be source indicators. The investigation of carbon fractions at different sites may provide some information for improving model parameters in estimating their radiative effects.</p

    On the potential high acid deposition in northeastern China

    No full text
    There is an acid deposition conundrum in China: contrary to conventional wisdom, extremely high ambient sulfate concentrations in northeastern China are not always accompanied by correspondingly high acidities. To investigate this discrepancy, data from two independent sets of in situ field measurements were analyzed along with Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Model for Ozone and Related chemical Tracers (MOZART) chemical transport model calculations. The field measurements included soluble aerosol ion concentrations and pH and particulate data from 11 cities, as well as pH measurement data from 74 sites in China. This study explores the basis for and the impacts of the large discrepancy in northeastern China between the major acidity precursors (SO2 and NOx) and measured acidity levels as indicated by pH values. There are extremely high SO2 emissions and ambient concentrations in northeastern China, while the corresponding acidity is unusually low (high pH) in this region. This is inconsistent with the usual situation where high-acidity precursor pollutants result in low pH (high acidity) values and acid rain conditions. In other regions, such as southern China and the United States, high SO2 concentrations are typically well correlated with high acidities. Using measured soluble particle measurements (including both positively and negatively charged ions), it is seen that there are high values of alkaline ions in northeastern China that play an important role in neutralizing acidity in this region. This result strongly suggests that the high alkaline concentrations, especially Ca2+, increase warm season pH values by about 0.5 in northern China, partially explaining the inconsistency between sulfate concentrations and acidity. This has a very important implication for acid rain mitigationespecially in northeastern China. However, there are additional issues pertaining to the precursor-acidity relationship that need further investigation. Why is it that the reduction in acidity due to the alkaline ions is only significant in summer? During winter, the measured alkaline ions play a much smaller role in explaining the discrepancy. The measured alkaline ions in this study were mostly obtained from particles in the PM2.5 range. However, the size of calcium particles is typically much largerextending well beyond 2.5 mu mand so a significant amount of calcium may be underestimated by PM2.5 measurements alone. The under-sampling of calcium particles is further exacerbated in that the sampling protocol excluded particle (and soluble ion and pH) measurements during dust storms. This all leads to the need for an improved understanding of pollutant-ion-particulate interactions in China, and their role in explaining the counter-intuitive conclusion that dust mitigation strategies in China could have the unintended consequence of exacerbating acid rain conditions.</p

    Chemical composition of PM2.5 at a high–altitude regional backgroundsite over Northeast of Tibet Plateau

    No full text
    Aerosol samples were collected from a site near Qinghai Lake (QHL) on the northeastern margin of the Tibetan Plateau (TP) to investigate PM2.5 mass levels and chemical composition, especially their seasonal patterns and sources. The PM2.5 ranged from 5.7 to 149.7&nbsp;&mu;g m&ndash;3, and it was predominately crustal material (-40% on average). The combined mass of eight water&ndash;soluble inorganic ions ranged from 1.0 to 41.5&nbsp;&mu;g m&ndash;3, with the largest contributions from SO42&ndash; NO3-, and Ca2+. Low abundances of organic carbon (OC, range: 1.0 to 8.2&nbsp;&mu;g m&ndash;3) and elemental carbon (EC, 0.2 to 2.3&nbsp;&mu;g m&ndash;3) were found in QHL. Weak seasonality in the OC/EC ratio (4.5&plusmn;2.0) indicated simple and stable sources for carbonaceous particles. The water&ndash;soluble ions, OC and EC accounted for ~30%, 10% and 2% of the PM2.5, respectively. Water&ndash;soluble organic carbon (WSOC, range: 0.5 to 4.3&nbsp;&mu;g m&ndash;3) accounted for 47.8% of the OC. Both OC and WSOC were positively correlated with water&ndash;soluble K+(r=0.70 and 0.73 respectively), an indicator of biomass burning. Higher WSOC and stronger correlations between WSOC and EC in spring and winter compared with summer and autumn are evidence for primary biomass burning aerosols. The concentrations of mass and major compositions were 2&ndash;10 times higher than those for some TP or continental background sites but much lower than urban areas. Compared with particles produced from burning yak dung (a presumptive source material), PM2.5 had higher SO42&ndash;/OC ratios. The higher ratios were presumed as a result of fossil fuel combustion. After excluding data for dust storms events, the relative percentages of OM, EC, K+, NH4+, NO3&ndash; and mineral dust showed little difference among seasons despite different monsoons dominated in four seasons; implying that the PM2.5 sources were relatively stable. The results from QHL evidently reflect regional cha racteristics of the aerosol.</p

    Indoor and Outdoor Chemical Components of PM2.5 in the Rural Areas ofNorthwestern China

    No full text
    A case study of indoor and outdoor fine particles (PM2.5) was undertaken for rural areas in northwestern China, and quantitative data was obtained on their chemical composition including carbon fractions, water soluble ions, and elements. OM (organic matter), sulfate, and geological material dominated PM2.5, followed by nitrate and ammonium, which accounted for 78&ndash;85% of the mass for indoor and outdoor environments. The variations of the carbon fractions indicated that four OC factions and EC1 were more abundant in winter than in summer. SO4 2&minus; contributions were the highest of the ionic species for indoor and outdoor environments (about 40% of total ions in winter and 53% in summer), followed by NO3 &minus; (about 23% in winter and 14% in summer). The integrated results from the ratios of K+/OC, K+/EC, and as well as the EF (enrichment factor) values for K, Cl, S and Pb, indicate that the biofuel contributions were significant in the rural area. The indoor/outdoor ratios and correlations of the components were also investigated. The results for the indoor and outdoor PM2.5 sources showed that biomass burning in summer was the dominant primary source (31% for indoor and 44% for outdoor), and those for winter were coal combustion (21% for indoor and 29% for outdoor) and biomass burning (24% for indoor and 16% for outdoor). Due to the local patterns of energy consumption, the discussion presented in this work could give implications for future strategies to improve rural air quality.</p

    Molecular Distribution and Stable Carbon Isotopic Composition of Dicarboxylic Acids, Ketocarboxylic Acids, and alpha-Dicarbonyls in Size-Resolved Atmospheric Particles From Xi'an City, China

    No full text
    Size-resolved airborne particles (9-stages) in urban Xi&#39;an, China, during summer and winter were measured for molecular distributions and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and alpha-dicarbonyls. To our best knowledge, we report for the first time the size-resolved differences in stable carbon isotopic compositions of diacids and related compounds in continental organic aerosols. High ambient concentrations of terephthalic (tPh, 379 +/- 200 ng m(-3)) and glyoxylic acids (omega C-2, 235 +/- 134 ng m(-3)) in Xi&#39;an aerosols during winter compared to those in other Chinese cities suggest significant emissions from plastic waste burning and coal combustions. Most of the target compounds are enriched in the fine mode (&lt;2.1 mu m) in both seasons peaking at 0.7-2.1 mu m. However, summertime concentrations of malonic (C-3), succinic (C-4), azelaic (C-9), phthalic (Ph), pyruvic (Pyr), 4-oxobutanoic (omega C-4), and 9-oxononanoic (omega C-9) acids, and glyoxal (Gly) in the coarse mode (&gt;2.1 mu m) are comparable to and even higher than those in the fine mode (&lt;2.1 mu m). Stable carbon isotopic compositions of the major organics are higher in winter than in summer, except oxalic acid (C-2), omega C-4, and Ph. delta C-13 of C-2 showed a clear difference in sizes during summer, with higher values in fine mode (ranging from -22.8 parts per thousand to -21.9 parts per thousand) and lower values in coarse mode (-27.1 parts per thousand to -23.6 parts per thousand). The lower delta C-13 of C-2 in coarse particles indicate that coarse mode of the compound originates from evaporation from fine mode and subsequent condensation/adsorption onto pre-existing coarse particles. Positive linear correlations of C-2, sulfate and omega C-2 and their delta C-13 values suggest that omega C-2 is a key intermediate, which is formed in aqueous-phase via photooxidation of precursors (e.g., Gly and Pyr), followed by a further oxidation to produce C-2.</p

    Black carbon (BC) in a northern Tibetan mountain: effect of Kuwait fires on glaciers

    No full text
    The black carbon (BC) deposition on the ice core at Muztagh Ata Mountain, northern Tibetan Plateau, was analyzed. Two sets of measurements were used in this study, which included the air samplings of BC particles during 2004&ndash;2006 and the ice core drillings of BC deposition during 1986&ndash;1994. Two numerical models were used to analyze the measured data. A global chemical transportation model (MOZART-4) was used to analyze the BC transport from the source regions, and a radiative transfer model (SNICAR) was used to study the effect of BC on snow albedo. The results show that during 1991&ndash;1992, there was a strong spike in the BC deposition at Muztagh Ata, suggesting that there was an unusual emission in the upward region during this period. This high peak of BC deposition was investigated by using the global chemical transportation model (MOZART-4). The analysis indicated that the emissions from large Kuwait fires at the end of the first Gulf War in 1991 caused this high peak of the BC concentrations and deposition (about 3&ndash;4 times higher than other years) at Muztagh Ata Mountain, suggesting that the upward BC emissions had important impacts on this remote site located on the northern Tibetan Plateau. Thus, there is a need to quantitatively estimate the effect of surrounding emissions on the BC concentrations on the northern Tibetan Plateau. In this study, a sensitivity study with four individual BC emission regions (Central Asia, Europe, the Persian Gulf, and South Asia) was conducted by using the MOZART-4 model. The result suggests that during the &ldquo;normal period&rdquo; (non-Kuwait fires), the largest effect was due to the Central Asia source (44 %) during the Indian monsoon period, while during the non-monsoon period, the largest effect was due to the South Asia source (34 %). The increase in radiative forcing increase (RFI) due to the deposition of BC on snow was estimated by using the radiative transfer model (SNICAR). The results show that under the fresh snow assumption, the estimated increase in RFI ranged from 0.2 to 2.5 W m&minus;2, while under the aged snow assumption, the estimated increase in RFI ranged from 0.9 to 5.7 W m&minus;2. During the Kuwait fires period, the RFI values increased about 2&ndash;5 times higher than in the &ldquo;normal period&rdquo;, suggesting a significant increase for the snow melting on the northern Tibetan Plateau due to this fire event. This result suggests that the variability of BC deposition at Muztagh Ata Mountain provides useful information to study the effect of the upward BC emissions on environmental and climate issues in the northern Tibetan Plateau. The radiative effect of BC deposition on the snow melting provides important information regarding the water resources in the region.</p
    corecore