98,189 research outputs found

    BES Recent Results and Future Plans

    Get PDF
    We report the preliminary R values for all the 85 energy points scanned in the energy region of 2-5 GeV with the upgraded Beijing Spectrometer (BESII) at Beijing Electron Positron Collider (BEPC). Preliminary results from the J/psi data collected with both BESI and BESII are presented. Measurements of the branching fraction of the psi(2S) decays and the psi(2S) resonance parameters are reported. The future plans, i.e. significantly upgrade the machine and detector are also discussed.Comment: Talk given at APPAC2000, 6 pages, 8 figure

    An octonion algebra originating in combinatorics

    Full text link
    C.H. Yang discovered a polynomial version of the classical Lagrange identity expressing the product of two sums of four squares as another sum of four squares. He used it to give short proofs of some important theorems on composition of delta-codes (now known as T-sequences). We investigate the possible new versions of his polynomial Lagrange identity. Our main result shows that all such identities are equivalent to each other.Comment: 11 pages, A simpler proof of the main theorem, due to Alberto Elduque, is inserted. The paper will appear in the Proc. Amer. Math. So

    Intrinsic Percolative Superconductivity in Heavily Overdoped High Temperature Superconductors

    Full text link
    Magnetic measurements on heavily overdoped La2−xSrxCuO4La_{2-x}Sr_xCuO_4, Tl2Ba2CuO6Tl_2Ba_2CuO_6, Bi2Sr2CuO6Bi_2Sr_2CuO_6 and Bi2Sr2CaCu2O8Bi_2Sr_2CaCu_2O_8 single crystals reveal a new type magnetization hysteresis loops characterized by the vanishing of usual central peak near zero field. Since this effect has been observed in various systems with very different structural details, it reflects probably a generic behavior for all high temperature superconductors. This easy penetration of magnetic flux can be understood in the picture of percolative superconductivity due to the inhomogeneous electronic state in heavily overdoped regime.Comment: 4 pages, 5 figure

    Topological Weyl and Node-Line Semimetals in Ferromagnetic Vanadium-Phosphorous-Oxide β\beta-V2_2OPO4_4 Compound

    Full text link
    We propose that the topological semimetal features can co-exist with ferromagnetic ground state in vanadium-phosphorous-oxide β\beta-V2_2OPO4_4 compound from first-principles calculations. In this magnetic system with inversion symmetry, the direction of magnetization is able to manipulate the symmetric protected band structures from a node-line type to a Weyl one in the presence of spin-orbital-coupling. The node-line semimetal phase is protected by the mirror symmetry with the reflection-invariant plane perpendicular to magnetic order. Within mirror symmetry breaking due to the magnetization along other directions, the gapless node-line loop will degenerate to only one pair of Weyl points protected by the rotational symmetry along the magnetic axis, which are largely separated in momentum space. Such Weyl semimetal phase provides a nice candidate with the minimum number of Weyl points in a condensed matter system. The results of surface band calculations confirm the non-trivial topology of this proposed compound. This findings provide a realistic candidate for the investigation of topological semimetals with time-reversal symmetry breaking, particularly towards the realization of quantum anomalous Hall effect in Weyl semimetals.Comment: 5 pages, 4 figure
    • …
    corecore