49 research outputs found

    Metamaterial absorber integrated microfluidic terahertz sensors

    Get PDF
    Spatial overlap between the electromagnetic fields and the analytes is a key factor for strong light-matter interaction leading to high sensitivity for label-free refractive index sensing. Usually, the overlap and therefore the sensitivity are limited by either the localized near field of plasmonic antennas or the decayed resonant mode outside the cavity applied to monitor the refractive index variation. In this paper, by constructing a metal microstructure array-dielectric-metal (MDM) structure, a novel metamaterial absorber integrated microfluidic (MAIM) sensor is proposed and demonstrated in terahertz (THz) range, where the dielectric layer of the MDM structure is hollow and acts as the microfluidic channel. Tuning the electromagnetic parameters of metamaterial absorber, greatly confined electromagnetic fields can be obtained in the channel resulting in significantly enhanced interaction between the analytes and the THz wave. A high sensitivity of 3.5 THz/RIU is predicted. The experimental results of devices working around 1 THz agree with the simulation ones well. The proposed idea to integrate metamaterial and microfluid with a large light-matter interaction can be extended to other frequency regions and has promising applications in matter detection and biosensing

    Selection of Ovine Oocytes by Brilliant Cresyl Blue Staining

    Get PDF
    Sheep oocytes derived from the ovaries collected from the slaughterhouse are often used for research on in vitro embryo production, animal cloning, transgenesis, embryonic stem cells, and other embryo biotechnology aspects. Improving the in vitro culture efficiency of oocytes can provide more materials for similar studies. Generally, determination of oocyte quality is mostly based on the layers of cumulus cells and cytoplasm or cytoplasm uniformity and colors. This requires considerable experience to better identify oocyte quality because of the intense subjectivity involved (Gordon (2003), Madison et al. (1992) and De Loos et al. (1992)). BCB staining is a function of glucose-6-phosphate dehydrogenase (G6PD) activity, an enzyme synthesized in developing oocytes, which decreases in activity with maturation. Therefore, unstained oocytes (BCB−) are high in G6PD activity, while the less mature oocytes stains are deep blue (BCB+) due to insuffcient G6PD activity to decolorize the BCB dye

    Nanobubble technology enhanced ozonation process for ammonia removal

    Get PDF
    Ozone (O3) has been widely used for water and wastewater treatment due to its strong oxidation ability, however, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Thereby, an integrated approach using novel nanobubble technology and ozone oxidation method was studied in order to enhance the ozonization of ammonia. Artificial wastewater (AW) with an initial concentration of 1600 mg/L ammonia was used in this study. In the ozone-nanobubble treatment group, the concentration of nano-sized bubbles was 2.2 × 107 particles/mL, and the bubbles with <200 nm diameter were 14 times higher than those in the ozone-macrobubble treatment control group. Ozone aeration was operated for 5 min in both nanobubble treatment and control groups, however, the sampling and measurement were conducted for 30 min to compare the utilization of O3 for ammonia oxidation. H+ was the by-product of the ammonia ozonation process, thus the pH decreased from 8 to 7 and 7.5 in nanobubble treatment and control groups, respectively, after 30 min of operation. The fast removal of ammonia was observed in both systems in the first 10 min, where the concentration of ammonia decreased from 1600 mg/L to 835 and 1110 mg/L in nanobubble treatment and control groups, respectively. In the nanobubble treatment group, ammonia concentrations kept the fast-decreasing trend and reached the final removal performance of 82.5% at the end of the experiment, which was significantly higher than that (44.2%) in the control group. Moreover, the first-order kinetic model could be used to describe the removal processes and revealed a significantly higher kinetic rate constant (0.064 min−1) compared with that (0.017 min−1) in the control group. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of a high level of ammonia in contaminated water

    Adapting Tea Production to Climate Change under Rapid Economic Development in China from 1987 to 2017

    No full text
    Tea (Camellia sinensis L.), as one of the most important cash crops in China, plays an important role in increasing farmers’ incomes and guaranteeing a high quality of life. Tea production has been greatly influenced by both climate change and economic development in China. However, without a scientific understanding of the interaction mechanism of climate change and the impetus from rapid economic development on tea production practices in China, it is difficult to take adaptive actions to meet the climate change challenges for the tea industry. In this paper, we firstly assessed the potential impacts of climate change on tea climate suitability by empirical formula calculation using meteorological data; then, the effects from the additional climatic stress due to warming on tea production were detected with the annual statistical tea yield record on a municipal level. The contribution of socioeconomic development to the tea industry was evaluated with the comparison of the movement of China’s national economy’s and tea industry’s gravity center during the period of 1987–2017. Finally, a conceptual adaptation framework was built to demonstrate the interaction mechanisms between climate change, tea production, and the economic development. The results showed that there was a negative impact of climate change on tea production in mainland China, with the percentage of high tea climate suitability (>0.9) areas dropping by 45% to 32%, while opportunities of enlarging the tea cultivating area emerged in the north tea production region where the tea climate suitability increased. We found that the tea planting area expanded northwards from 33° N in 1987 to 35° N in 2017 to take advantage of the favorable climatic resources due to warming, and tea planting decreased at an altitude of 100–400 m while increasing to higher altitude of 400–2000 m to avoid hot temperature damage and seek the optimum environment in high mountainous areas for tea production. In addition, the tea production moved westward along the longitude, decreasing obviously at 117–121° E while increasing significantly at 98–104° E and 107–110° E. Meanwhile, the tea production gravity center showed a westward movement consistent with the national economic gravity center moving trend, which means that tea industry development was driven by multiple socioeconomic factors and climatic forcings. A conceptual framework was built in this paper, aiming to show a robust adaptation mechanism for the tea system to maximize the benefits and minimize the damages from the altered climatic resources under rapid economic development in mainland China. The results in this study would help deepen the understanding of the adaptation process and practices for tea production in mainland China

    Ecosystem Service Synergies Promote Ecological Tea Gardens: A Case Study in Fuzhou, China

    No full text
    Exploring the trade-off/synergy among ecosystem services (ESs) of agroecosystems could provide effective support for improving agricultural resilience for sustainable development. The construction of ecological tea gardens is emerging, aims to achieve a win-win situation for the tea industry and ecological environment protection. However, the effect of ES trade-offs/synergies on tea production is still not clear. In this study, we selected Fuzhou city, China, as a case study and explored the relationship among tea production and ESs in 2010 and 2020. Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) and Intelligent Urban Ecosystem Management System (IUEMS) models were used to assess the ecosystem (dis)services, which were tea production, water yield, soil retention, net primary productivity (NPP), climate regulation, soil erosion and carbon emissions. Then, the sum of trade-off/synergy coefficients of ESs (Cts) were defined to reveal the trade-off/synergy in tea gardens and areas except tea gardens (ETG areas). K-means clustering was used to assess the spatiotemporal change of traditional tea garden and ecological tea garden, reflecting the effect of ecological tea garden construction. The results showed that: (1) the high-value areas of tea production were mainly distributed in Lianjiang County, with yields up to 3.6 t/ha, and the low-value areas in Yongtai County, with yields from 0.1–1.0 t/ha. Other ESs showed spatial heterogeneity. (2) The trade-offs in ETG areas intensified from 2010 to 2020, with Cts decreasing from −0.28 to −0.73, and the synergy in tea garden was at risk of decline, with Cts decreasing from 4.46 to 1.02. (3) From 2010 to 2020, 96.72% of traditional tea gardens (Area I) were transformed into ecological tea gardens (Areas IV and V). (4) Further, we classified the tea garden into five zones based on tea yield, with Zone I as the low tea yield areas and Zone V as the highest. From Zone I to Zone V, the Cts increased from 2.6 to 7.5 in 2010, and from 1.9 to 6.5 in 2020, respectively. These results demonstrate the effectiveness of the construction of ecological tea gardens in Fuzhou and provide a reference for subsequent studies on the ESs of tea gardens and governance of ecological tea gardens

    Predicting Possible Distribution of Tea (Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China

    No full text
    Climate change has dramatic impacts on the growth and the geographical distribution of tea (Camellia sinensis L.). Assessing the potential distribution of tea will help decision makers to formulate appropriate adaptation measures to use the altered climatic resources and avoid the damage from climate hazards. The objective in this study is to model the current and future distribution of tea species based on the four SSPs scenarios using the MaxEnt model in China. For the modeling procedure, tea growth records in 410 sites and 9 climate variables were used in this paper. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance of the model. The AUC value was over 0.9 in this study, showing the excellent simulation result of the model. In relation to the current distribution, areas of 82.01 × 104 km2 (8.51% of total land area in China), 115.97 × 104 km2 (12.03% of total land area in China), and 67.14 × 104 km2 (6.97% of total land area in China) were recognized as Marginal, Medium, and Optimal climate suitable habitats for tea over China. Compared to the current distribution, most of the Optimal suitability areas in southeast China would be lost in four scenarios. The area of Marginal and Medium suitable habitats would expand in SSP370 and SSP585, especially in 2041–2061 and 2081–2100. The suitable area of tea would expand northwards and westwards, suggesting that additional new suitable habitats could be created for tea production with the future climate change, especially in Shandong, Henan, Guizhou, and Yunnan Provinces. This research would provide vital scientific understanding for policy making on tea production, tea garden site chosen and adopyion of adaptation methods in the future

    How Do Differences in Land Ownership Types in China Affect Land Development? A Case from Beijing

    No full text
    China has a unique land use system in which there are two types of land ownership, namely, state-owned urban land and farmer collective-owned rural land. Despite strict restrictions on the use rights of farmer collective-owned land, rural land is, in fact, developed along two pathways: it is formally acquired by the state and transferred into state ownership, or it is informally developed while remaining in collective ownership. Taking Beijing, the capital, as an example, and using data from land use surveys in the Changping district of the city, this paper examines the spatial patterns and characteristics of land development along these two pathways, and sets up a multinomial logit model to test whether land development with and without ownership change was affected by the same factors. The findings suggest that: (1) development on collective-owned land is more spatially scattered, and its links to public infrastructure are weaker; (2) transportation infrastructure, farmer income, spatial location, and previous land usage are the major factors that affect land development; nevertheless, the influences of the factors are different for the two pathways

    A Fuzzy Predictive PID Control Scheme for the Excitation System of Synchronous Generator

    No full text
    With the rapid development of the process control theories in the electrical engineering, new control strategies which lead to better performances are urgently demanded for the excitation control of synchronous generators. For the sake of improving the convergence rate of the terminal voltage and covering the weakness in the adaptability of operational conditions of conventional controls in disturbances, a fuzzy predictive PID excitation control method is proposed in this paper. This control scheme can be divided into three steps in every sample interval: PID parameter adaptation, rolling state prediction and real-time control movement integration. Numerical simulations have been conducted under different operational conditions with the proposed method as well as the conventional ones, respectively. Experimental comparisons indicate the superiority in voltage regulation performance of the proposed method

    The Mural Form of Eosinophilic Esophagitis Is Accompanied by Superficial Esophageal Squamous Cell Carcinoma

    Get PDF
    Eosinophilic esophagitis (EE) is an increasingly recognized primary clinicopathologic disorder of the esophagus which lacks a specific etiology. Most reports on EE have been limited to the esophagus mucosa. We present a 56-year-old man with the mural form of EE and superficial squamous cell carcinoma in the esophagus. The eosinophils diffusely invaded the full-thickness of the esophagus, mainly infiltrating the muscularis, including the skeletal and smooth muscles. The lesions in the mucosa, submucosa, and adventitia were slight. Although the superficial squamous cell carcinoma was excited by an endoscopic biopsy, there were some changes in the architecture and size of the squamous epithelial cells. The changed cells also expressed the p53 protein. It appears that the eosinophils stimulated cell proliferation, followed by genetic mutations and cancer development. The patient survived with resection of the esophagus and inhaled corticosteroids

    Quantitative CT Analysis of Body Composition in Maintenance Hemodialysis Patients

    No full text
    This study analyzes body composition information in patients on maintenance hemodialysis and explores the application value of QCT technology. Methods: A total of 62 patients on maintenance hemodialysis were selected and divided into three groups according to different dialysis durations. The bone density value, abdominal fat, and muscle content of patients were determined by quantitative CT technology and 62 cases of the health examination population matched by sex and age were selected for comparative analysis. Results: In the dialysis group, osteoporosis accounted for 17.70% (11 cases) and bone loss accounted for 30.60% (19 cases), while in the healthy control group, osteoporosis and bone loss accounted for 6.50% (4 cases) and 16.10% (10 cases), respectively. The difference between these two groups was statistically significant. Moreover, the intra-abdominal and subcutaneous fat content in the dialysis group were (113.70±63.29)cm² and (80.65±59.67)cm², respectively, which were lower than that of the healthy control group ((135.90±58.80)cm² and (122.26±54.94)cm², respectively). Additionally, the dialysis group had a significantly lower L3-SMA (107.00±30.70)cm² than the control group (121.37±32.87)cm², and the lumbar vertebral bone density value was significantly lower in male dialysis patients (156.11±51.94)mg/cm³ than in female dialysis patients (124.29±50.89)mg/cm³. Moreover, the subcutaneous fat content was significantly higher in females than in males; however, the difference in intraperitoneal fat content between males and females was not statistically significant. Additionally, the difference between bone density values and L3-SMA changes in the dialysis group and the length of dialysis time were not statistically significant. Conclusion: The incidence of osteoporosis is higher in patients on maintenance hemodialysis than in healthy people, and the amount of abdominal fat and muscle content are lower than that in healthy people. Moreover, quantitative CT body composition monitoring has high accuracy and sensitivity
    corecore