2,139 research outputs found

    Understanding poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel as a multifunctional membrane in microfluidic cell culture platform

    Get PDF
    Cell culture technology developed at the turn of 20th century using Petri dish, which is not able to consider the microenvironment that the cells experience in vessels, has remained virtually unchanged for almost a century. However, such microenvironment associated with cell culture which usually consists of soluble factors, extracellular matrix cues, and cellular networks is difficult to reproduce experimentally with the traditional approach. In order to further elaborate complex mechanisms of cell biology through mimicking such microenvironment in vivo, the technical approaches together with developed microdevices are highly demanded within such a context. Microfluidic devices have been extensively developed and used for cell culture in the last two decades, which offer numerous advantages and a great potential for accurate and efficient control of the complex culturing microenvironment at cellular length scale. However, these devices are relatively complex in their fabrication and integration to fulfil multifunctional tasks for cell culture and drug testing simultaneously, which for example requires a membrane between the culture chamber and drug delivery reservoir to control microenvironment at cellular scale. This thesis is to primarily focus on the feasibility and reliability in the attempt of using poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel as an inserted membrane, based on its permeable and flexible tissue-like properties. PHEMA membrane is able to serve dual purposes in the microfluidic systems in cell culture: i) exchanging nutrients between culture chamber and drug delivery reservoir; and ii) sealing the microchannel circuits.</div

    Dynamical Complexity of a Spatial Phytoplankton-Zooplankton Model with an Alternative Prey and Refuge Effect

    Get PDF
    The spatiotemporal dynamics of a phytoplankton-zooplankton model with an alternative prey and refuge effect is investigated mathematically and numerically. The stability of the equilibrium point and the traveling wave solution of the phytoplankton-zooplankton model are described based on theoretical mathematical work, which provides the basis of the numerical simulation. The numerical analysis shows that refuges have a strong effect on the spatiotemporal dynamics of the model according to the pattern formation. These results may help us to understand prey-predator interactions in water ecosystems. They are also relevant to research into phytoplankton-zooplankton ecosystems

    Indole contributes to tetracycline resistance via the outer membrane protein OmpN in Vibrio splendidus

    Get PDF
    As an interspecies and interkingdom signaling molecule, indole has recently received attention for its diverse effects on the physiology of both bacteria and hosts. In this study, indole increased the tetracycline resistance of Vibrio splendidus. The minimal inhibitory concentration of tetracycline was 10 mu g/mL, and the OD600 of V. splendidus decreased by 94.5% in the presence of 20 mu g/mL tetracycline; however, the OD600 of V. splendidus with a mixture of 20 mu g/mL tetracycline and 125 mu M indole was 10- or 4.5-fold higher than that with only 20 mu g/mL tetracycline at different time points. The percentage of cells resistant to 10 mu g/mL tetracycline was 600-fold higher in the culture with an OD600 of approximately 2.0 (higher level of indole) than that in the culture with an OD600 of 0.5, which also meant that the level of indole was correlated to the tetracycline resistance of V. splendidus. Furthermore, one differentially expressed protein, which was identified as the outer membrane porin OmpN using SDS-PAGE combined with MALDI-TOF/TOF MS, was upregulated. Consequently, the expression of the ompN gene in the presence of either tetracycline or indole and simultaneously in the presence of indole and tetracycline was upregulated by 1.8-, 2.54-, and 6.01-fold, respectively, compared to the control samples. The combined results demonstrated that indole enhanced the tetracycline resistance of V. splendidus, and this resistance was probably due to upregulation of the outer membrane porin OmpN

    Correlation between Grafting Density and Confined Crystallization Behavior of Poly(ethylene glycol) Grafted to Silica

    Get PDF
    The interfacial interactions of polymer-nanoparticles have dramatical effects on the crystallization behavior of grafted polymers. In this study, methoxy polyethylene glycol (MPEG) (molecular weights 750, 2000 and 4000 g mol−1) was grafted onto amino-modified nanosized silica (SiO2-NH2) by the “grafting to” method. The effects of the grafting density and molecular weight on the confined crystallization of grafted MPEG (MPEG-g-SiO2) were systematically investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle X-ray scattering (WAXS). It was found that confinement effects are stronger when lower molecular weights of grafted MPEG are employed. These grafted MPEG chains are more difficult to stretch out on SiO2-NH2 surfaces than when they are free in the bulk polymer. Both crystallization temperature (Tc) and crystallinity of grafted MPEG chains decrease with reductions of grafting density. Additionally, covalent bonding effects and interfacial interaction confinement effects are strengthened by the decrease in grafting density, leading to an increase in decomposition temperature and to the disappearance of the self-nucleation Domain (i.e., Domain II), when self-nucleation experiments are performed by DSC. Overall isothermal crystallization kinetics was studied by DSC and the results were analyzed with the Avrami equation. An Avrami index of n≈3 was obtained for neat MPEG (indicating that instantaneous spherulites are formed). However, in the case of MPEG-g-SiO2 with the lowest grafting density, the Avrami index of (n) was less than 1 (first order kinetics or lower), indicating that nucleation is the determining factor of the overall crystallization kinetics, a signature for confined crystallization. At the same time, the crystallization from the melt for this MPEG-g-SiO2 with the lowest grafting density occurs at Tc ≈-30 ºC, a temperature close to the glass transition temperature (Tg) of MPEG, indicating that this confined MPEG crystallizes from homogeneous nuclei.This project was supported by the National Natural Science Foundation of China (21574141) and the Ministry of Science and Technology of China (2017YFE0117800). The authors gratefully acknowledge the funding of project BIODEST, Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-2017-778092. The authors thank beamline BL16B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and helps during experiments
    corecore