479 research outputs found

    Intrinsic Spin Hall Conductivity of MoTe2 and WTe2 Semimetals

    Full text link
    We report a comprehensive study on the intrinsic spin Hall conductivity (SHC) of semimetals MoTe2 and WTe2 by ab initio calculation. Large SHC and desirable spin Hall angles have been discovered, due to the strong spin orbit coupling effect and low charge conductivity in semimetals. Diverse anisotropic SHC values, attributed to the unusual reduced-symmetry crystalline structure, have been revealed. We report an effective method on SHC optimization by electron doping, and exhibit the mechanism of SHC variation respect to the energy shifting by the spin Berry curvature. Our work provides insights into the realization of strong spin Hall effects in 2D systems

    Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction

    Get PDF
    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient SW generation and propagation, with potential applications in spintronic and magnonic devices.Comment: 6 pages, 5 figures. To be published in Scientific Report
    corecore