29 research outputs found

    Plant Phenotypic Traits Eventually Shape Its Microbiota: A Common Garden Test

    Get PDF
    Plant genotype drives the development of plant phenotypes and the assembly of plant microbiota. The potential influence of the plant phenotypic characters on its microbiota is not well characterized and the co-occurrence interrelations for specific microbial taxa and plant phenotypic characters are poorly understood. We established a common garden experiment, which quantifies prokaryotic and fungal communities in the phyllosphere and rhizosphere of six spruce (Picea spp.) tree species, through Illumina amplicon sequencing. We tested for relationships between bacterial/archaeal and fungal communities and for the phenotypic characters of their plant hosts. Host phenotypic characters including leaf length, leaf water content, leaf water storage capacity, leaf dry mass per area, leaf nitrogen content, leaf phosphorous content, leaf potassium content, leaf δ13C values, stomatal conductance, net photosynthetic rate, intercellular carbon dioxide concentration, and transpiration rate were significantly correlated with the diversity and composition of the bacterial/archaeal and fungal communities. These correlations between plant microbiota and suites of host plant phenotypic characters suggest that plant genotype shape its microbiota by driving the development of plant phenotypes. This will advance our understanding of plant-microbe associations and the drivers of variation in plant and ecosystem function

    Effect of Ultrasound Combinated with Sodium Hypochlorite Treatment on Microbial Inhibition and Quality of Fresh-Cut Cucumber

    No full text
    The influence of ultrasound combined with sodium hypochlorite (US-NaClO) treatment on microorganisms and quality of fresh-cut cucumber during storage were investigated. Ultrasound (400 W, 40 kHz, US: 5, 10 and 15 min) and sodium hypochlorite (NaClO: 50, 75, 100 ppm) were used to treat fresh-cut cucumber in a single or combined treatment and stored at 4 °C for 8 days and analyzed for texture, color and flavor. The results showed that US-NaClO treatment had a synergistic effect on the inhibition of microorganisms during storage. It could significantly reduce (p < 0.05) the number of microorganisms by 1.73 to 2.17 log CFU/g. In addition, US-NaClO treatment reduced the accumulation of malondialdehyde (MDA) during storage (4.42 nmol/g) and water mobility, and maintained the integrity of the cell membrane, delayed the increase of weight loss (3.21%), reduced water loss, thus slowing down the decline of firmness (9.20%) of fresh-cut cucumber during storage. The degradation of chlorophyll (6.41%) was reduced to maintain the color of freshly cut cucumbers. At the same time, US-NaClO could maintain the content of aldehydes, the main aromatic substance of cucumber, and reduced the content of alcohols and ketones during storage. Combined with the electronic nose results, it could maintain the cucumber flavor at the end of the storage period and reduce the odor produced by microorganisms. Overall, US-NaClO was helpful to inhibit the growth of microorganisms during storage, improve the quality of fresh-cut cucumber

    Identification of Traditional Chinese Medicine Constitutions and Physiological Indexes Risk Factors in Metabolic Syndrome: A Data Mining Approach

    No full text
    Objective. In order to find the predictive indexes for metabolic syndrome (MS), a data mining method was used to identify significant physiological indexes and traditional Chinese medicine (TCM) constitutions. Methods. The annual health check-up data including physical examination data; biochemical tests and Constitution in Chinese Medicine Questionnaire (CCMQ) measurement data from 2014 to 2016 were screened according to the inclusion and exclusion criteria. A predictive matrix was established by the longitudinal data of three consecutive years. TreeNet machine learning algorithm was applied to build prediction model to uncover the dependence relationship between physiological indexes, TCM constitutions, and MS. Results. By model testing, the overall accuracy rate for prediction model by TreeNet was 73.23%. Top 12.31% individuals in test group (n=325) that have higher probability of having MS covered 23.68% MS patients, showing 0.92 times more risk of having MS than the general population. Importance of ranked top 15 was listed in descending order . The top 5 variables of great importance in MS prediction were TBIL difference between 2014 and 2015 (D_TBIL), TBIL in 2014 (TBIL 2014), LDL-C difference between 2014 and 2015 (D_LDL-C), CCMQ scores for balanced constitution in 2015 (balanced constitution 2015), and TCH in 2015 (TCH 2015). When D_TBIL was between 0 and 2, TBIL 2014 was between 10 and 15, D_LDL-C was above 19, balanced constitution 2015 was below 60, or TCH 2015 was above 5.7, the incidence of MS was higher. Furthermore, there were interactions between balanced constitution 2015 score and TBIL 2014 or D_LDL-C in MS prediction. Conclusion. Balanced constitution, TBIL, LDL-C, and TCH level can act as predictors for MS. The combination of TCM constitution and physiological indexes can give early warning to MS

    Geological load and health risk of heavy metals uptake by tea from soil: What are the significant influencing factors?

    No full text
    As one of the most popular beverages around world, factors influencing transfer of heavy metals from soil to tea leaves is crucial to investigate and assess health risk through tea drinking. Parent material (PM), soil and tea samples from Anhui province, typical tea producing area in China were collected in this study. To find out distribution characteristics of heavy metals in tea and soil, and influencing factors for transfer process, variables of plantation factors, soil properties and geological background were taken into account. The results showed that weathering pedogenic process could be the main release source of heavy metals in soil under the acid environment for tea growth. More than 75% of soil Cd, Hg, Pb and Zn exceeded background. However heavy metals in tea samples were below the limits of China, WHO and EU standards. Soil organic matter and redox process influenced the distribution and transfer of As, Pb, Cd and Hg in soil and tea. While geochemical behaviours of Cr, Cu, Ni and Zn were mainly related to soil pH and iron oxides in tea garden. The method of classification and regression trees (CART) showed clones of tea type, bedrock type, soil texture, soil organic and fertilizer application were identified as the main factors influencing transfer factors of heavy metals from soil to tea. The specific types of tea grown in the soil with sandy clay and bedrock of granite/granodiorite and shale should be given more monitoring. The non-carcinogenic hazard quotients (HQ) and cancer risk (Risk) through tea drinking were primarily caused by Pb and Cd respectively. To reduce the potential health risk from tea, application of organic and/or compound fertilizer were thought to be the effective management strategy for tea plantation.</p

    Effect and Molecular Mechanisms of Jiedu Recipe on Hypoxia-Induced Angiogenesis after Transcatheter Arterial Chemoembolization in Hepatocellular Carcinoma

    No full text
    Transcatheter arterial chemoembolization (TACE) is one of the effective treatment methods for hepatocellular carcinoma (HCC) in middle and late phases. However, TACE-induced hypoxia may promote the angiogenesis and section of some cytokines, such as IL-8, and, thereby, lead to tumor metastasis. Therefore, we investigated the effect of Jiedu Recipe (JR), which has been demonstrated as an effective Traditional Chinese Medicine (TCM) recipe on HCC, on TACE-induced cytokines upregulation and hypoxia-induced angiogenesis. A total of 88 hepatocellular carcinoma (HCC) patients treated with TACE were enrolled and divided into a JR group or control group. TACE induced significant increases of neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), IL-1β, IL-2R, IL-6, and IL-8. JR treatment significantly inhibited the elevation of IL-8 compared with control. In vitro, JR significantly inhibited the hypoxia-induced overexpression of IL-8, HIF-1α, and VEGF mRNA in Huh 7 cells. ELISA assay demonstrated the effect of JR on IL-8 expression. Both hypoxia and IL-8 may promote angiogenesis which was suppressed by JR. Western blot showed that IL-8 upregulated the expression of phosphorylation of AKT, ERK, NF-κB, and VEGFR, which were inhibited by JR. On the other hand, effects of IL-8 on the increase of p-AKT and p-ERK were also blocked by LY294002 and U0126, respectively. In conclusion, our results indicated that JR may inhibit hypoxia-induced angiogenesis through suppressing IL-8/HIF-1α/PI3K and MAPK/ERK pathways after TACE in HCC patients

    Vitronectin Destroyed Intestinal Epithelial Cell Differentiation through Activation of PDE4-Mediated Ferroptosis in Inflammatory Bowel Disease

    No full text
    Objective. Vitronectin (VTN) has been reported to trigger cell pyroptosis to aggravate inflammation in our previous study. However, the function of VTN in inflammatory bowel disease (IBD) remains to be addressed. Methods. Real-time PCR and western blotting were performed to analyze VTN-regulated intestinal epithelial cell (IEC) differentiation through ferroptosis, and immunofluorescence (IF), luciferase, and chromatin immunoprecipitation were used to identify whether VTN-modulated ferroptosis is dependent on phosphodiesterase 4 (PDE4)/protein kinase A (PKA)/cyclic adenosine monophosphate-response element-binding protein (CREB) cascade pathway. In vivo experiment in mice and a pilot study in patients with IBD were used to confirm inhibition of PDE4-alleviated IECs ferroptosis, leading to cell differentiation during mucosal healing. Results. Herein, we found that caudal-related homeobox transcription factor 2-mediated IECs differentiation was impaired in response to VTN, which was attributed to enhanced ferroptosis characterized by decreased glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 expression. Inhibition of ferroptosis in IECs rescued the inhibitory effect of VTN on cell differentiation. Further analysis showed that VTN triggered phosphorylation of PDE4, leading to inhibit PKA/CREB activation and CREB nuclear translocation, which further reduced GPX4 transactivation. Endogenous PKA interacted with CREB, and this interaction was destroyed in response to VTN stimulation. What is more, overexpression of CREB in CaCO2 cells overcame the promotion of VTN on ferroptosis. Most importantly, inhibition of PDE4 by roflumilast or dipyridamole could alleviate dextran sulfate sodium-induced colitis in mice and in a pilot clinical study confirmed by IF. Conclusions. These findings demonstrated that highly expressed VTN disrupted IECs differentiation through PDE4-mediated ferroptosis in IBD, suggesting targeting PDE4 could be a promising therapeutic strategy for patients with IBD
    corecore