93,540 research outputs found
Spatial oscillations in the spontaneous emission rate of an atom inside a metallic wedge
A method of images is applied to study the spontaneous emission of an atom
inside a metallic wedge with an opening angle of , where N is an
arbitrary positive integer. We show the method of images gives a rate formula
consistent with that from Quantum Electrodynamics. Using the method of images,
we show the correspondence between the oscillations in the spontaneous emission
rate and the closed-orbits of emitted photon going away and returning to the
atom inside the wedge. The closed-orbits can be readily constructed using the
method of images and they are also extracted from the spontaneous emission
rate.Comment: 8 figure
Bound whispering gallery modes in circular arrays of dielectric spherical particles
Low-dimensional ordered arrays of optical elements can possess bound modes
having an extremely high quality factor. Typically, these arrays consist of
metal elements which have significantly high light absorption thus restricting
performance. In this paper we address the following question: can bound modes
be formed in dielectric systems where the absorption of light is negligible?
Our investigation of circular arrays of spherical particles shows that (1) high
quality modes in an array of 10 or more particles can be attained at least for
a refractive index , so optical materials like TiO or GaAs can
be used; (2) the most bound modes have nearly transverse polarization
perpendicular to the circular plane; (3) in a particularly interesting case of
TiO particles (rutile phase, ), the quality factor of the most
bound mode increases almost by an order of magnitude with the addition of 10
extra particles, while for particles made of GaAs the quality factor increases
by almost two orders of magnitude with the addition of ten extra particles. We
hope that this preliminary study will stimulate experimental investigations of
bound modes in low-dimensional arrays of dielectric particles.Comment: Submitted to Physical Review
Local anaesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro
Retrospective studies indicate that the use of regional anesthesia can reduce cancer recurrence after surgery which could be due to ranging from immune function preservation to direct molecular mechanisms. This study was to investigate the effects of bupivacaine on ovarian and prostate cancer cell biology and the underlying molecular mechanisms. Cell viability, proliferation and migration of ovarian carcinoma (SKOV-3) and prostate carcinoma (PC-3) were examined following treatment with bupivacaine. Cleaved caspase 3, 8 and 9, and GSK-3β, pGSK-3β(tyr216) and pGSK-3β(ser9) expression were assessed by immunofluorescence. FAS ligand neutralization, caspase and GSK-3 inhibitors and GSK-3β siRNA were applied to further explore underlying mechanisms. Clinically relevant concentrations of bupivacaine reduced cell viability and inhibited cellular proliferation and migration in both cell lines. Caspase 8 and 9 inhibition generated partial cell death reversal in SKOV-3, whilst only caspase 9 was effective in PC-3. Bupivacaine increased the phosphorylation of GSK-3β(Tyr216) in SKOV-3 but without measurable effect in PC3. GSK-3β inhibition and siRNA gene knockdown decreased bupivacaine induced cell death in SKOV-3 but not in PC3. Our data suggests that bupivacaine has direct ‘anti-cancer’ properties through the activation of intrinsic and extrinsic apoptotic pathways in ovarian cancer but only the intrinsic pathway in prostate cancer
Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors
We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors
- …