922 research outputs found
3-(4-Fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one
The title compound, C16H13FO2, was prepared from 4-methoxyhypnone and 4-fluorobenzophenone by Claisen–Schmidt condensation. All the bond lengths and bond angles are in normal ranges. The dihedral angle formed by the two benzene rings is 33.49 (2)°. The crystal packing is stabilized by intermolecular C—H⋯O hydrogen-bonding interactions
Synthesis, crystal structure of and DFT calculations on bisglycinato-bis[p-(hydroxymethyl)pyridine]nickel(II)
The main aim of this study was to investigate the relationship between mIn tA new Ni(II) complex of bisglycinato-bis[p-(hydroxylmethyl)py-ridine] was synthesized and characterized by elemental analysis, IR, UV–Vis spectroscopy and X-ray single crystal diffraction analysis. The thermal stability of the title complex was also determined. The complex adopts a distorted octahedral geometry and possesses inversion symmetry with the Ni(II) ion as the center of inversion. Density function theory (DFT) calculations of the structure, electronic absorption spectra, electron structure and natural population analysis (NPA) at the B3LYP/LANL2DZ level of theory were performed. The predicted geometric parameters and electronic spectra were compared with the experimental values and they supported each other. The NPA results indicate that the electronic transitions were mainly derived from the contribution of an intra-ligand (IL) transition, a ligand-to-metal charge transfer (LMCT) transition and a d-d transition. The electron structure calculations suggest that the central Ni(II) ion uses its 4s and 3d orbitals to form covalent bonds with coordinated N and O atoms. The calculated bond orders are also consistent with the thermal decomposition results. Based on vibrational analysis, the thermodynamic properties of the title complex were predicted and the correlative equations between these thermodynamic properties and temperature are also reported
(1R,1′S)-1,1′-Dihydroxy-1,1′-biisobenzofuran-3,3′(1H,1′H)-dione
In the title compound, C16H10O6, the complete molecule is generated by a crystallographic centre of symmetry. In the crystal, O—H⋯O hydrogen bonds link the molecules into (100) sheets and C—H⋯O links also occur
Crystal engineered acid–base complexes with 2D and 3D hydrogen bonding systems using p-hydroxybenzoic acid as the building block
p-Hydroxybenzoic acid (p-HOBA) was selected as the building block for self-assembly with five bases, i.e., diethylamine, tert-butylamine, cyclohexylamine, imidazole and piperazine, and generation of the corresponding acid–base complexes 1–5. Crystal structure analyses suggest that proton-transfer from the carboxyl hydrogen to the nitrogen atom of the bases can be observed in 1–4, while only in 5 does a solvent water molecule co-exist with p--HOBA and piperazine. With the presence of O–H···O hydrogen bonds in 1–4, the deprotonated p-hydroxybenzoate anions (p-HOBAA–) are simply connected each other in a head-to-tail motif to form one-dimensional (1D) arrays, which are further extended to distinct two-dimensional (2D) (for 1 and 4) and three-dimensional (3D) (for 2 and 3) networks via N–H···O interactions. While in 5, neutral acid and base are combined pair-wise by O–H···N and N–H···O bonds to form a 1D tape and then the 1D tapes are sequentially combined by water molecules to create a 3D network. Some interlayer or intralayer C–H···O, C–H···p and p×××p interactions help to stabilize the supramolecular buildings. Melting point determination analyses indicate that the five acid–base complexes are not the ordinary superposition of the reactants and they are more stable than the original reactants
2,7-Dibromo-9,9-bis[(pyridin-1-ium-4-yl)methyl]fluorene dinitrate
In the title compound, C25H20Br2N2
2+·2NO3
−, the cation lies on a twofold rotation axis which imposes disorder of the dibromofluorene unit. In addition, the unique nitrate anion is disordered over two general sites of equal occupancy. The crystal structure is stabilized by intermolecular N—H⋯O hydrogen bonds
Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts
This study shows lithosphere evolution history in the west North China Craton (NCC) from the early Cretaceous to Quaternary by studying the major element, trace element and Sr-Nd-Hf isotope compositions in Jining basalts of 119.6-108.6. Ma, 23.5-21.9. Ma and 1.3-0.11. Ma.The early Cretaceous basalts (119.6-108.6Ma) display enriched characteristics with high contents of incompatible elements, high 87Sr/86Sri, low εNd(t) and low εHf(t). These basalts resulted from partial melting of ancient metasomatized lithospheric mantle, and we consider the 119.6-108.6Ma magmatism as indicating lithosphere thinning in the west NCC. Although the Pacific slab seen seismically in the mantle transition zone beneath eastern China is no older than 60Ma, there exists convincing evidence for the presence of the Paleo-Pacific slab in the transition-zone in the Mesozoic. Thus we propose that the water released from the transition-zone slab hydrated the overlying lithosphere and further converted the base of the lithosphere into asthenosphere. This is the most likely mechanism responsible for the lithosphere thinning in the west NCC and the petrogenesis of the Jining 119.6-108.6Ma basalts.The Jining 23.5-21.9Ma basalts also have high contents of incompatible elements, but they display high εNd(t), high εHf(t) and variably low 87Sr/86Sri. We propose that these Miocene basalts were derived from the asthenosphere with contributions from ancient metasomatized lithospheric mantle during melt ascent. The Jining Quaternary basalts (1.3-0.11Ma) represent the melt of upwelling asthenosphere with low 87Sr/86Sri, high εNd(t) and high εHf(t). Upwelling and decompression melting of the eastward flowing asthenosphere from beneath western plateaus to beneath eastern hilly plains in the Cenozoic is the most plausible mechanism for the petrogenesis of Jining Cenozoic basalts (both of 23.5-21.9Ma and 1.3-0.11Ma), but the Jining 1.3-0.11Ma basalts must have been produced beneath even thinner lithosphere.Taken together geophysical studies and our petrological and geochemical studies of all these three episodes of the Jining basalts, we propose that the lithosphere in the west NCC has been thinning since the early Cretaceous and the thinning continues to the present
Morphological and phylogenetic analyzes reveal two new species of Melanconiella from Fujian Province, China
IntroductionSpecies of Melanconiella include a diverse array of plant pathogens as well as endophytic fungi. Members of this genus have been frequently collected from the family Betulaceae (birches) in Europe and North America. Little, however, if known concerning the distribution of Melanconiella and/or their potential as pathogens of other plant hosts.MethodsFungi were noted and isolated from diseased leaves of Loropetalum chinense (Chinese fringe flower) and Camellia sinensis (tea) in Fujian Province, China. Genomic DNA was extracted from fungal isolates and the nucleotide sequences of four loci were determined and sued to construct phylogenetic trees. Morphological characteristics of fungal structures were determined via microscopic analyses.ResultsFour strains and two new species of Melanconiella were isolated from infected leaves of L. chinense and C. sinensis in Fujian Province, China. Based on morphology and a multi-gene phylogeny of the internal transcribed spacer regions with the intervening 5.8S nrRNA gene (ITS), the 28S large subunit of nuclear ribosomal RNA (LSU), the second largest subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF1-α), Melanconiellaloropetali sp. nov. and Melanconiellacamelliae sp. nov. were identified and described herein. Detailed descriptions, illustrations, and a key to the known species of Melanconiella are provided.DiscussionThese data identify new species of Melanconiella, expanding the potential range and distribution of these dark septate fungi. The developed keys provide a reference source for further characterization of these fungi
Assessing the structure and diversity of fungal community in plant soil under different climatic and vegetation conditions
IntroductionUnderstanding microbial communities in diverse ecosystems is crucial for unraveling the intricate relationships among microorganisms, their environment, and ecosystem processes. In this study, we investigated differences in the fungal community structure and diversity in soils from two contrasting climatic and vegetation conditions: the Xinjiang western China plateau and the Fujian southeastern coastal province.MethodsA total of 36 soil samples collected from two climatic regions were subjected to high-throughput ITS gene sequencing for fungal community analysis. In conjunction soil physicochemical properties were assessed and compared. Analyses included an examination of the relationship of fungal community structure to environmental factors and functional profiling of the community structure was using the FUNGuild pipeline.ResultsOur data revealed rich fungal diversity, with a total of 11 fungal phyla, 31 classes, 86 orders, 200 families, 388 genera, and 515 species identified in the soil samples. Distinct variations in the physicochemical properties of the soil and fungal community structure were seen in relation to climate and surface vegetation. Notably, despite a colder climate, the rhizosphere soil of Xinjiang exhibited higher fungal (α-)diversity compared to the rhizosphere soil of Fujian. β-diversity analyses indicated that soil heterogeneity and differences in fungal community structure were primarily influenced by spatial distance limitations and vegetation type. Furthermore, we identified dominant fungal phyla with significant roles in energy cycling and organic matter degradation, including members of the Sordariomycetes, Leotiomycetes, Archaeosporomycetes, and Agaricomycetes. Functional analyses of soil fungal communities highlighted distinct microbial ecological functions in Xinjiang and Fujian soils. Xinjiang soil was characterized by a focus on wood and plant saprotrophy, and endophytes, whereas in Fujian soil the fungal community was mainly associated with ectomycorrhizal interactions, fungal parasitism, and wood saprotrophy.DiscussionOur findings suggest fungal communities in different climatic conditions adapt along distinct patterns with, plants to cope with environmental stress and contribute significantly to energy metabolism and material cycling within soil-plant systems. This study provides valuable insights into the ecological diversity of fungal communities driven by geological and environmental factors
- …