1,616 research outputs found
Local implementation of nonlocal operations of block forms
We investigate the local implementation of nonlocal operations with the block
matrix form, and propose a protocol for any diagonal or offdiagonal block
operation. This method can be directly generalized to the two-party multiqubit
case and the multiparty case. Especially, in the multiparty cases, any diagonal
block operation can be locally implemented using the same resources as the
multiparty control-U operation discussed in Ref. [Eisert et al., Phys. Rev. A
62, 052317(2000)]. Although in the bipartite case, this kind of operations can
be transformed to control-U operation using local operations, these
transformations are impossible in the multiparty cases. We also compare the
local implementation of nonlocal block operations with the remote
implementation of local operations, and point out a relation between them.Comment: 7 pages, 3 figure
Long-term Stabilization of Fiber Laser Using Phase-locking Technique with Ultra-low Phase Noise and Phase Drift
We review the conventional phase-locking technique in the long-term
stabilization of the mode-locked fiber laser and investigate the phase noise
limitation of the conventional technique. To break the limitation, we propose
an improved phase-locking technique with an optic-microwave phase detector in
achieving the ultra-low phase noise and phase drift. The mechanism and the
theoretical model of the novel phase-locking technique are also discussed. The
long-term stabilization experiments demonstrate that the improved technique can
achieve the long-term stabilization for the MLFL with ultra-low phase noise and
phase drift. The excellent locking performance of the improved phase-locking
technique implies that this technique can be used to stabilize the mode-locked
fiber laser with the highly stable H-master or optical clock without stability
loss
Time-periodic solution for a fourth-order parabolic equation describing crystal surface growth
In this paper, by using the Galerkin method, the existence and uniqueness of time-periodic generalized solutions to a fourth-order parabolic equation describing crystal surface growth are proved
Multi-particle and High-dimension Controlled Order Rearrangement Encryption Protocols
Based on the controlled order rearrange encryption (CORE) for quantum key
distribution using EPR pairs[Fu.G.Deng and G.L.Long Phys.Rev.A68 (2003)
042315], we propose the generalized controlled order rearrangement encryption
(GCORE) protocols of qubits and qutrits, concretely display them in the
cases using 3-qubit, 2-qutrit maximally entangled basis states. We further
indicate that our protocols will become safer with the increase of number of
particles and dimensions. Moreover, we carry out the security analysis using
quantum covariant cloning machine for the protocol using qutrits. Although the
applications of the generalized scheme need to be further studied, the GCORE
has many distinct features such as great capacity and high efficiency
Modulation of Outer Hair Cell Electromotility by Cochlear Supporting Cells and Gap Junctions
Outer hair cell (OHC) or prestin-based electromotility is an active cochlear amplifier in the mammalian inner ear that can increase hearing sensitivity and frequency selectivity. In situ, Deiters supporting cells are well-coupled by gap junctions and constrain OHCs standing on the basilar membrane. Here, we report that both electrical and mechanical stimulations in Deiters cells (DCs) can modulate OHC electromotility. There was no direct electrical conductance between the DCs and the OHCs. However, depolarization in DCs reduced OHC electromotility associated nonlinear capacitance (NLC) and distortion products. Increase in the turgor pressure of DCs also shifted OHC NLC to the negative voltage direction. Destruction of the cytoskeleton in DCs or dissociation of the mechanical-coupling between DCs and OHCs abolished these effects, indicating the modulation through the cytoskeleton activation and DC-OHC mechanical coupling rather than via electric field potentials. We also found that changes in gap junctional coupling between DCs induced large membrane potential and current changes in the DCs and shifted OHC NLC. Uncoupling of gap junctions between DCs shifted NLC to the negative direction. These data indicate that DCs not only provide a physical scaffold to support OHCs but also can directly modulate OHC electromotility through the DC-OHC mechanical coupling. Our findings reveal a new mechanism of cochlear supporting cells and gap junctional coupling to modulate OHC electromotility and eventually hearing sensitivity in the inner ear
A Novel Model of the Ideal Point Method Coupled with Objective and Subjective Weighting Method for Evaluation of Surrounding Rock Stability
The classification of surrounding rock stability is the critical problem in tunneling engineering. In order to decrease engineering disasters, the surrounding rock stability should be accurately evaluated. The ideal point method is applied to the classification of surrounding rock stability. Considering the complexity of surrounding rock classification, some factors such as rock uniaxial compressive strengthen, integrality coefficient of rock mass, the angle between tunnel axis and the main joint, joints condition, and seepage measurement of groundwater are selected as evaluation indices. The weight coefficients of these evaluation indices are determined by the objective and subjective weighting method, consisting with the delphi method and the information entropy theory. The objective and subjective weighting method is exact and reliable to determine the weights of evaluation indices, considering not only the expert’s experiences, but also objectivity of the field test data. A new composite model is established for evaluating the surrounding rock stability based on the ideal point method and the objective and subjective weighting method. The present model is applied to Beigu mountain tunnel in Jiangsu province, China. The result is in good agreement with practical situation of surrounding rock, which proves that the ideal point method used to classify the surrounding rock in tunnels is reasonable and effective. The present model is simple and has very strong operability, which possesses a good prospect of engineering application
- …