29,305 research outputs found

    Exploiting Amplitude Control in Intelligent Reflecting Surface Aided Wireless Communication with Imperfect CSI

    Full text link
    Intelligent reflecting surface (IRS) is a promising new paradigm to achieve high spectral and energy efficiency for future wireless networks by reconfiguring the wireless signal propagation via passive reflection. To reap the potential gains of IRS, channel state information (CSI) is essential, whereas channel estimation errors are inevitable in practice due to limited channel training resources. In this paper, in order to optimize the performance of IRS-aided multiuser systems with imperfect CSI, we propose to jointly design the active transmit precoding at the access point (AP) and passive reflection coefficients of IRS, each consisting of not only the conventional phase shift and also the newly exploited amplitude variation. First, the achievable rate of each user is derived assuming a practical IRS channel estimation method, which shows that the interference due to CSI errors is intricately related to the AP transmit precoders, the channel training power and the IRS reflection coefficients during both channel training and data transmission. Then, for the single-user case, by combining the benefits of the penalty method, Dinkelbach method and block successive upper-bound minimization (BSUM) method, a new penalized Dinkelbach-BSUM algorithm is proposed to optimize the IRS reflection coefficients for maximizing the achievable data transmission rate subjected to CSI errors; while for the multiuser case, a new penalty dual decomposition (PDD)-based algorithm is proposed to maximize the users' weighted sum-rate. Simulation results are presented to validate the effectiveness of our proposed algorithms as compared to benchmark schemes. In particular, useful insights are drawn to characterize the effect of IRS reflection amplitude control (with/without the conventional phase shift) on the system performance under imperfect CSI.Comment: 15 pages, 10 figures, accepted by IEEE Transactions on Communication

    Robust Transceiver Design for MISO Interference Channel with Energy Harvesting

    Full text link
    In this paper, we consider multiuser multiple-input single-output (MISO) interference channel where the received signal is divided into two parts for information decoding and energy harvesting (EH), respectively. The transmit beamforming vectors and receive power splitting (PS) ratios are jointly designed in order to minimize the total transmission power subject to both signal-to-interference-plus-noise ratio (SINR) and EH constraints. Most joint beamforming and power splitting (JBPS) designs assume that perfect channel state information (CSI) is available; however CSI errors are inevitable in practice. To overcome this limitation, we study the robust JBPS design problem assuming a norm-bounded error (NBE) model for the CSI. Three different solution approaches are proposed for the robust JBPS problem, each one leading to a different computational algorithm. Firstly, an efficient semidefinite relaxation (SDR)-based approach is presented to solve the highly non-convex JBPS problem, where the latter can be formulated as a semidefinite programming (SDP) problem. A rank-one recovery method is provided to recover a robust feasible solution to the original problem. Secondly, based on second order cone programming (SOCP) relaxation, we propose a low complexity approach with the aid of a closed-form robust solution recovery method. Thirdly, a new iterative method is also provided which can achieve near-optimal performance when the SDR-based algorithm results in a higher-rank solution. We prove that this iterative algorithm monotonically converges to a Karush-Kuhn-Tucker (KKT) solution of the robust JBPS problem. Finally, simulation results are presented to validate the robustness and efficiency of the proposed algorithms.Comment: 13 pages, 8 figures. arXiv admin note: text overlap with arXiv:1407.0474 by other author

    Joint Transceiver Design Algorithms for Multiuser MISO Relay Systems with Energy Harvesting

    Full text link
    In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver design problem for the BS beamforming vectors, the RS amplify-and-forward transformation matrix and the power splitting (PS) ratios at the single-antenna receivers. Firstly, an iterative algorithm based on alternating optimization (AO) and with guaranteed convergence is proposed to successively optimize the transceiver coefficients. Secondly, a novel design scheme based on switched relaying (SR) is proposed that can significantly reduce the computational complexity and overhead of the AO based designs while maintaining a similar performance. In the proposed SR scheme, the RS is equipped with a codebook of permutation matrices. For each permutation matrix, a latent transceiver is designed which consists of BS beamforming vectors, optimally scaled RS permutation matrix and receiver PS ratios. For the given CSI, the optimal transceiver with the lowest total power consumption is selected for transmission. We propose a concave-convex procedure based and subgradient-type iterative algorithms for the non-robust and robust latent transceiver designs. Simulation results are presented to validate the effectiveness of all the proposed algorithms

    Phase transitions and spin excitations of spin-1 bosons in optical lattice

    Full text link
    We investigate ground state properties of spin-1 bosonic system trapped in optical lattice with extended standard basis operator (SBO) method. For both ferromagnetic (U20U_20) systems, we analytically figure out the symmetry properties in Mott-insulator and superfluid phases, which would provide a deeper insight into the MI-SF phase transition process. Then by applying self-consistent approach to the method, we include the effect of quantum and thermal fluctuations and derive the MI-SF transition phase diagram, which is in quantitative agreement with recent Monte-Carlo simulation at zero temperature, and at finite temperature, we find the underestimation of finite-temperature-effect in the mean-field approximation method. If we further consider the spin excitations in the insulating states of spin-1 system in external field, distinct spin phases are expected. Therefore, in the Mott lobes with n=1n=1 and n=2n=2 atoms per site, we give analytical and numerical boundaries of the singlet, nematic, partially magnetic and ferromagnetic phases in the magnetic phase diagrams.Comment: 14 pages, 6 figure

    China’s Business Cycles between 1954 – 2004: Productivity and Fiscal Policy Changes

    Get PDF
    We study the real business cycles in China between 1954-2006, and examine the changes after China’s market-oriented reforms starting in 1978. We overcome some data problems and find that the economic volatility is generally moderated after 1978. However, the relative volatility of each variable to output diverges. We undertake a neo-classical approach to investigate factors that can drive the features of long-term fluctuations and the differences between the pre-1978 and the post-1978 periods. We find that TFP process can explain the main features of fluctuations and the general moderation but not the relative volatility changes. We show that policy changes in government expenditure can account for the relative volatility divergency. Counterfactual experiments are also provided to discover the role of each factor in explaining the long-term fluctuation features in China.business cycles, fiscal policy, market-oriented reforms, China

    Local implementation of nonlocal operations of block forms

    Full text link
    We investigate the local implementation of nonlocal operations with the block matrix form, and propose a protocol for any diagonal or offdiagonal block operation. This method can be directly generalized to the two-party multiqubit case and the multiparty case. Especially, in the multiparty cases, any diagonal block operation can be locally implemented using the same resources as the multiparty control-U operation discussed in Ref. [Eisert et al., Phys. Rev. A 62, 052317(2000)]. Although in the bipartite case, this kind of operations can be transformed to control-U operation using local operations, these transformations are impossible in the multiparty cases. We also compare the local implementation of nonlocal block operations with the remote implementation of local operations, and point out a relation between them.Comment: 7 pages, 3 figure
    corecore