26 research outputs found

    Prognostic values of ALDOB expression and 18F-FDG PET/CT in hepatocellular carcinoma

    Get PDF
    PurposeThe glycolytic enzyme fructose 1,6-bisphosphate aldolase B (ALDOB) is aberrantly expressed and impacts the prognosis in hepatocellular carcinoma (HCC). Hepatic ALDOB loss leads to paradoxical upregulation of glucose metabolism, favoring hepatocellular carcinogenesis. Nevertheless, the relationship between ALDOB expression and 18F-fluorodeoxyglucose (18F-FDG) uptake, and their effects on HCC prognosis remain unclear. We evaluated whether ALDOB expression is associated with 18F-FDG uptake and their impacts on HCC prognosis prediction.MethodsChanges in ALDOB expression levels and the prognostic values in HCC were analyzed using data from The Cancer Genome Atlas (TCGA) database. Ultimately, 34 patients with HCC who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) preoperatively were enrolled in this retrospective study. ALDOB expression was determined using immunohistochemistry (IHC) staining, and the maximum standardized uptake value (SUVmax) of HCC was calculated from the 18F-FDG PET/CT scans. The relationship between ALDOB expression and SUVmax was examined, and their impacts on overall survival were evaluated using Cox proportional hazards models and Kaplan–Meier survival analysis. ALDOB overexpression in HUH7 and 7721 cells was used to analyze its role in tumor metabolism.ResultsAccording to TCGA database, the ALDOB mRNA level was downregulated in HCC compared to normal tissue, and significantly shortened overall survival in HCC patients. ALDOB protein expression was similarly decreased in IHC findings in HCC than that in adjacent normal tissues (P<0.05) and was significantly associated with tumor size (P<0.001), high tumor-node-metastasis stage (P=0.022), and elevated SUVmax (P=0.009). ALDOB expression in HCC was inversely correlated with SUVmax (r=-0.454; P=0.012), and the optimal SUVmax cutoff value for predicting its expression was 4.15. Prognostically, low ALDOB expression or SUVmax ≥3.9 indicated shorter overall survival time in HCC. Moreover, COX regression analysis suggested high SUVmax as an independent prognostic risk factor for HCC (P=0.036). HCC patients with negative ALDOB expression and positive SUVmax (≥3.9) were correlated with worse prognosis. ALDOB overexpression in HCC cells significantly decreases 18F-FDG uptake and lactate production.ConclusionSUVmax in HCC patients is inversely correlated with ALDOB expression, and 18F-FDG PET/CT may be useful for ALDOB status prediction. The combined use of ALDOB expression and 18F-FDG PET/CT data can provide additional information on disease prognosis in HCC patients

    Cannabinoid Receptor Subtype 2 (Cb2R) Agonist Gw405833 Reduces Agonist-Induced Ca2+ Oscillations In Mouse Pancreatic Acinar Cells

    Get PDF
    Emerging evidence demonstrates that the blockade of intracellular Ca 2+ signals may protect pancreatic acinar cells against Ca 2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB 2 R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB 2 Rs modulate intracellular Ca 2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB 2 R agonist, GW405833 (GW) in agonist-induced Ca 2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB 1 R-knockout (KO), and CB 2 R-KO mice. Immunohistochemical labeling revealed that CB 2 R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB 2 Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca 2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB 2 R antagonist, AM630, or was absent in CB 2 R-KO but not CB 1 R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca 2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB 2 Rs eliminates ACh-induced Ca 2+ oscillations and L-arginine-induced enhancement of Ca 2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB 2 R-mediated protection in acute pancreatitis

    The Preparation of High-Volume Fraction SiC/Al Composites with High Thermal Conductivity by Vacuum Pressure Infiltration

    No full text
    The high-volume fraction SiC/Al composite is the new type of electronic packaging material, which plays an important role in the field of high-power integrated circuits. In this study, SiC/Al composites with high-volume fraction of SiC particles were prepared by vacuum pressure infiltration. The influence of SiC particle size and NH4HCO3 on the pores in the preform was explored, aiming to accurately adjust the volume fraction of SiC to meet the thermal performance requirements in different fields. In addition, the preform was infiltrated with different Al alloys, and the relationship between the porosity and thermal conductivity of SiC/Al was studied. For the SiC preform, the volume fraction of SiC can be adjusted regularly when 12 μm and 100 μm SiC particles are mixed in different proportions, and the volume fraction reaches the maximum when the proportion of coarse particles is about 77%. NH4HCO3 is conducive to the connectivity of pores in the preform, and about 40 vol.% of NH4HCO3 can effectively increase the porosity of the preform. Thermal conductivity is sensitive to the porosity of composites, especially in the range of 2.5–4.5%. A simple application of the Hasselman–Johnson model and a new thermal conductivity model, λd, established in this article, offer a good agreement with the experimental results

    Spatial Effects of Urban Agglomeration on Energy Efficiency: Evidence from China

    No full text
    The rapid expansion of large cities in China has substantially increased energy consumption. With ever stringent environmental policy in force, energy efficiency becomes an important issue. As the emergence of these urban agglomerations (UAs) is usually due to externality effects of spatially concentrated factors, this paper investigates how these factors can affect energy efficiency. Based on mono index, which is used to describe the spatial location information, we have constructed the spatial-structure index of UAs. Using panel data on ten major UAs in China from 2008 to 2017, we find that, in the whole sample, there is an inverse relationship between the spatial structure of UAs and energy efficiency: The higher the concentration degree of factors of UAs, the lower the energy efficiency. Across different regions, however, the relationship between spatial structure and energy efficiency is heterogeneous. The concentration degree of factors in the eastern and central regions of China is relatively high, and the spatial structure there does lead to a decrease in energy efficiency. By contrast, UAs in China’s western region are in a period of factor concentration, with spatial structure playing, in that region, a positive role in improving energy efficiency

    Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer

    No full text
    Abstract TIGAR is a p53 target gene that is known to protect cells from ROS-induced apoptosis by promoting the pentose phosphate pathway. The role of TIGAR in tumor cell invasion and metastasis remains elusive. Here we found that downregulation of TIGAR reduced the invasion and metastasis of NSCLC cells in vitro and in vivo. Immunohistochemical analysis of 72 NSCLC patients showed that TIGAR and Met protein expression was positively correlated with late stages of lung cancer. Besides, patients with high co-expression of TIGAR and Met presented a significantly worse survival. In addition, we found that Met signaling pathway is involved in TIGAR-induced invasion and metastasis. Our study indicates that TIGAR/Met pathway may be a novel target for NSCLC therapy. It is necessary to evaluate the expression of TIGAR before Met inhibitors are used for NSCLC treatment

    Population Density and Host Preference of the Japanese Pine Sawyer (<i>Monochamus alternatus</i>) in the Qinling–Daba Mountains of China

    No full text
    Monochamus alternatus is a serious trunk-boring pest and is the most important and effective vector of the pine wood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. The pine wilt disease poses a serious threat to forest vegetation and ecological security in the Qinling–Daba Mountains and their surrounding areas. In order to clarify whether the population density of M. alternatus larvae is related to the host preference of M. alternatus adults, we investigated the population density of M. alternatus overwintering larvae and explored the host preference of M. alternatus adults on Pinus tabuliformis, P. armandii, and P. massoniana. The results show that the population density of M. alternatus larvae was significantly higher on P. armandii than those on P. massoniana and P. tabuliformis. The development of M. alternatus larvae was continuous according to the measurements of the head capsule width and the pronotum width. Adults of M. alternatus preferred to oviposit on P. armandii rather than on P. massoniana and P. tabuliformis. Our results indicate that the difference in the population density of M. alternatus larvae between different host plants was due to the oviposition preference of M. alternatus adults. In addition, the instars of M. alternatus larvae could not be accurately determined, because Dyar’s law is not suitable for continuously developing individuals. This study could provide theoretical basis for the comprehensive prevention and control of the pine wilt disease in this region and adjacent areas

    Employing Engineered Enolase Promoter for Efficient Expression of <i>Thermomyces lanuginosus</i> Lipase in <i>Yarrowia lipolytica</i> via a Self-Excisable Vector

    No full text
    Yarrowia lipolytica is progressively being employed as a workhouse for recombinant protein expression. Here, we expanded the molecular toolbox by engineering the enolase promoter (pENO) and developed a new self-excisable vector, and based on this, a combined strategy was employed to enhance the expression of Thermomyces lanuginosus lipase (TLL) in Y. lipolytica. The strength of 11 truncated enolase promoters of different length was first identified using eGFP as a reporter. Seven of the truncated promoters were selected to examine their ability for driving TLL expression. Then, a series of enolase promoters with higher activities were developed by upstream fusing of different copies of UAS1B, and the recombinant strain Po1f/hp16e100-tll harboring the optimal promoter hp16e100 obtained a TLL activity of 447 U/mL. Additionally, a new self-excisable vector was developed based on a Cre/loxP recombination system, which achieved efficient markerless integration in Y. lipolytica. Subsequently, strains harboring one to four copies of the tll gene were constructed using this tool, with the three-copy strain Po1f/3tll showing the highest activity of 579 U/mL. The activity of Po1f/3tll was then increased to 720 U/mL by optimizing the shaking flask fermentation parameters. Moreover, the folding-related proteins Hac1, Pdi, and Kar2 were employed to further enhance TLL expression, and the TLL activity of the optimal recombinant strain Po1f/3tll-hac1-pdi-kar2 reached 1197 U/mL. By using this combined strategy, TLL activity was enhanced by approximately 39.9-fold compared to the initial strain. Thus, the new vector and the combined strategy could be a useful tool to engineer Y. lipolytica for high-level expression of heterologous protein

    Relationship between wheat flour’s quality characteristics and color of fresh wet noodles

    No full text
    ABSTRACTThirty-four wheat cultivars were used to study the relationship between wheat flour quality and fresh wet noodle (FWN) color when stored at room temperature (25°C) over a 24 h period by the partial least squares regression (PLSR) method. Results showed that quality characteristics of wheat flour and their coefficients of variation differed greatly, and the samples were very representative. During FWN storage, the a* value varied greatly, the L* value decreased, and the b* value increased. The results of the correlation analysis showed that the color of wheat flour had significant correlation with FWN (p <0.05), and FWN color at 0 h had significant correlation with FWN color changes during 24 h storage (p <0.05). Protein, wet gluten, dry gluten, ash content, PPO activity, and water absorption (WA) of wheat flour had significantly negative effects on the L* value of FWN (p <0.05). Peak viscosity (PV), trough viscosity (TV), and breakdown viscosity (BV) of the pasting properties of wheat flour contributed greatly to the L* value (p <0.05), but had significantly negative effects on the a* value (p <0.05). The results showed that quality characteristics of wheat flour profoundly affected FWN color changes during storage, and color, dough strength and pasting properties of wheat flour should be considered comprehensively when selecting the wheat variety for FWN
    corecore