4,280 research outputs found

    A practitioner's guide to nudging

    Full text link
    Supporting documentatio

    On Lyapunov-type inequalities for two-dimensional nonlinear partial systems

    Get PDF
    We establish a new Laypunov-type inequality for two nonlinear systems of partial differential equations and the discrete analogue is also established. As application, boundness of the two-dimensional Emden-Fowler-type equation is proved. Copyright © 2010 Lian-Ying Chen et al.published_or_final_versio

    Polar Duals of Convex and Star Bodies

    Get PDF
    published_or_final_versio

    Current situation analysis of the government invested project management

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Isolation and characteristic of an aerobic denitrifier with high nitrogen removal efficiency

    Get PDF
    Paracoccus denitrificans DL-23, isolated from aerobic domesticated activated sludge, was demonstrated to have high ability of denitrification and heterotrophic nitrification under aerobic condition. After optimization (succinate, COD/N 10, 37°C, 160 rpm), DL-23 removed 420 and 860 mg/l NO3--N within 36 to 60 h of growth, respectively. DL-23 also removed 380 mg/l NH4+-N within 24 h with ammonia as nitrogen source. The maximum removal rate was 30.3 mg/l·h. Meanwhile, DL-23 exhibited aerobic nitrite reduction ability with 658 mg/l NO2--N within 48 h.Key words: Aerobic denitrification, heterotrophic nitrification, nitrogen removal, Paracoccus denitrificans

    Understanding Auditory Spectro-Temporal Receptive Fields and Their Changes with Input Statistics by Efficient Coding Principles

    Get PDF
    Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed

    Creation and suppression of point defects through a kick-out substitution process of Fe in InP

    Get PDF
    Indium antisite defect In P-related photoluminescence has been observed in Fe-diffused semi-insulating (SI) InP. Compared to annealed undoped or Fe-predoped SI InP, there are fewer defects in SI InP obtained by long-duration, high-temperature Fe diffusion. The suppression of the formation of point defects in Fe-diffused SI InP can be explained in terms of the complete occupation by Fe at indium vacancy. The In P defect is enhanced by the indium interstitial that is caused by the kick out of In and the substitution at the indium site of Fe in the diffusion process. Through these Fe-diffusion results, the nature of the defects in annealed undoped SI InP is better understood. © 2002 American Institute of Physics.published_or_final_versio

    A Double-Voltage-Controlled Effective Thermal Conductivity Model of Graphene for Thermoelectric Cooling

    Full text link
    © 1963-2012 IEEE. Graphene provides a new opportunity for thermoelectric study based on its unique heat transfer behavior controllable by a gate voltage. In this paper, an effective thermal conductivity model of graphene for thermoelectric cooling is proposed. The model is based on a double-voltage-control mechanism. According to the law of Fourier heat conduction, an effective thermal conductivity model of the proposed thermoelectric cooling device is derived taking a tunable external voltage into account. Then, a gate voltage is used which can change graphene's thermoelectric characteristics. To verify the correctness and effectiveness of the proposed model, a circuit simulation model using HSPICE is built based on the thermoelectric duality. The simulation results from HSPICE and the calculated results from the mathematic model show good agreements with each other. This paper provides a novel precisely controlling method for thermoelectric cooling

    Studies of SARS virus vaccines

    Get PDF
    1. Intranasal vaccination using inactivated SARS coronavirus (SARS-CoV) vaccine with adjuvant can induce strong systemic (serum immunoglobulin [Ig] G) and respiratory tract local (tracheal-lung wash fluid IgA) antibody responses with neutralising activity. 2. RBD-Fc (protein-based vaccine) is able to induce effective neutralising antibodies able to provide protection from SARS-CoV infection in animal models. 3. A single dose of RBD-rAAV vaccination can induce adequate neutralising antibody against SARS-CoV infection. 4. Additional doses of vaccine increased the production of neutralising antibody 5-fold compared with a single dose. 5. RBD-rAAV vaccination provoked a prolonged antibody response with continually increasing levels of neutralising activity. 6. Intranasal vaccination with RBD-rAAV induced local IgA and systemic IgG neutralising antibodies and specific T-cell responses, able to protect against SARS-CoV infection in animal models. 7. When compared with the RBD-rAAV prime/boost vaccination, RBD-rAAV prime/RBD-peptide boost induced similar levels of Th1 and neutralising antibody responses that protected vaccinated mice from subsequent SARS-CoV challenges,but stronger Th2 and CTL responses. 8. Overall, our findings suggest that the inactivated vaccine, RBD-Fc and RBD-rAAV, can be further developed into effective and safe vaccines against SARS and that intranasal vaccination may be the preferred route of administration.published_or_final_versio
    corecore