157 research outputs found

    Direct policy search and uncertain policy evaluation

    Get PDF
    Reinforcement learning based on direct search in policy space requires few assumptions about the environment. Hence it is applicable in certain situations where most traditional reinforcement learning algorithms based on dynamic programming are not, especially in partially observable, deterministic worlds. In realistic settings, however, reliable policy evaluations are complicated by numerou sources of uncertainty, such as stochasticity in policy and environment. Given a limited life-time, how much time should a direct policy searcher spend on policy evaluations to obtain reliable statistics? Despite the fundamental nature of this question it has not received much attention yet. Our efficient approach based on the success-story algorithm (SSA) is radical in the sense that it never stops evaluating any previous policy modification except those it undoes for lack of empirical evidence that they have contributed to lifelong reward accelerations. Here we identify SSA’s fundamental advantages over traditional direct policy search (such as stochastic hill-climbing) on problems involving several sources of stochasticity and uncertaint),

    Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints

    Full text link
    Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively.Comment: 11 pages, published in EMNLP 201

    Safer-Instruct: Aligning Language Models with Automated Preference Data

    Full text link
    Reinforcement Learning from Human Feedback (RLHF) is a vital strategy for enhancing model safety in language models. However, annotating preference data for RLHF is a resource-intensive and creativity-demanding process, while automatic generation methods face limitations in data diversity and quality. In response, we present Safer-Instruct, a novel pipeline for semi-automatically constructing large-scale preference datasets. Our approach leverages reversed instruction tuning, instruction induction, and expert model evaluation to efficiently generate high-quality preference data without human annotators. We evaluate Safer-Instruct using LLaMA for instruction induction and GPT-4 as an expert model, generating approximately 10K preference samples. Finetuning an Alpaca model on this dataset demonstrates improved harmlessness while maintaining competitive performance on conversation and downstream tasks. Safer-Instruct addresses the challenges in preference data acquisition, advancing the development of safer and more responsible AI systems. Our code and data are available at https://github.com/uscnlp-lime/safer-instructComment: 11 page

    SODAPOP: Open-Ended Discovery of Social Biases in Social Commonsense Reasoning Models

    Full text link
    A common limitation of diagnostic tests for detecting social biases in NLP models is that they may only detect stereotypic associations that are pre-specified by the designer of the test. Since enumerating all possible problematic associations is infeasible, it is likely these tests fail to detect biases that are present in a model but not pre-specified by the designer. To address this limitation, we propose SODAPOP (SOcial bias Discovery from Answers about PeOPle) in social commonsense question-answering. Our pipeline generates modified instances from the Social IQa dataset (Sap et al., 2019) by (1) substituting names associated with different demographic groups, and (2) generating many distractor answers from a masked language model. By using a social commonsense model to score the generated distractors, we are able to uncover the model's stereotypic associations between demographic groups and an open set of words. We also test SODAPOP on debiased models and show the limitations of multiple state-of-the-art debiasing algorithms.Comment: EACL 202
    • …
    corecore