2,954 research outputs found

    Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes

    Get PDF
    We have studied the binding energies and electronic structures of metal (Ti, Al, Au) chains adsorbed on single-wall carbon nanotubes (SWNT) using first principles methods. Our calculations have shown that titanium is much more favored energetically over gold and aluminum to form a continuous chain on a variety of SWNTs. The interaction between titanium and carbon nanotube significantly modifies the electronic structures around Fermi energy for both zigzag and armchair tubes. The delocalized 3d electrons from the titanium chain generate additional states in the band gap regions of the semiconducting tubes, transforming them into metals.Comment: 4 pages, 3 figure

    Functional Diversity of Microbial Communities in Sludge-Amended Soils

    Get PDF
    AbstractThe BIOLOG method was applied to exploration of functional diversity of soil microbial communities in sludge-amended soils sampled from the Yangtze River Delta. Results indicated that metabolic profile, functional diversity indexes and Kinetic parameters of the soil microbial communities changed following soil amendment with sewage sludge, suggesting that the changes occurred in population of the microbes capable of exploiting carbon substrates and in this capability as well. The kinetic study of the functional diversity revealed that the metabolic profile of the soil microbial communities exhibited non-linear correlation with the incubation time, showing a curse of sigmoid that fits the dynamic model of growth of the soil microbial communities. In all the treatments, except for treatments of coastal fluvo-aquic soil amended with fresh sludge and dried sludge from Hangzhou, kinetic parameters K and r of the functional diversity of the soil microbial communities decreased significantly and parameter S increased. Changes in characteristics of the functional diversity well reflected differences in C utilizing capacity and model of the soil microbial communities in the sludge-amended soils, and changes in functional diversity of the soil microbial communities in a particular eco-environment, like soil amended with sewage sludge

    Named Graphs as a Mechanism for Reasoning About Provenance

    Full text link
    Named Graphs is a simple, compatible extension to the RDF abstract syntax that enables statements to be made about RDF graphs. This approach is in contrast to earlier attempts such as RDF reification, or knowledge-base specific extensions including quads and contexts. In this paper we demonstrate the use of Named Graphs and our experiences developing new kinds of semantic web application that build on Named Graphs for digital signatures, provenance, and semantic reasoning. We present a working example based on the Named Graphs for Jena (NG4J) API, from which we developed a semantic version control system for Software Engineering capable of reasoning about Named Graph-based provenance. We go on to discuss the implications of Named Graphs for Description Logics and semantic inference strategies

    The Dynamic Impacts of Employee Job Motivation on Employee Job Performance and Corporate Customer Satisfaction: The Contingent Role of ERP System Implementation

    Get PDF
    Prior research has generally found a significant, positive impact of employees\u27 job motivation on job performance, and which in turn, leads to more satisfied customers. However, little attention is directed towards how implementation of centralized information systems (IS), such as Enterprise Resource Planning (ERP) systems, will affect these relationships in the business to business (B2B) context. Toward this end, we plan to conduct a field study to empirically compare the effects of these relationships before and after the implementation of an ERP system. This cross-disciplinary study will contribute to the extant organization, marketing, and IS literature by examining how a centralized IS implementation moderates the relationships among employees’ job motivation, performance, and corporate customer satisfaction, and testing the proposed framework in the B2B context

    Density functional study of Aun_n (n=2-20) clusters: lowest-energy structures and electronic properties

    Get PDF
    We have investigated the lowest-energy structures and electronic properties of the Aun_n(n=2-20) clusters based on density functional theory (DFT) with local density approximation. The small Aun_n clusters adopt planar structures up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a structural transition from tabular cage-like structure to compact near-spherical structure is found around n=15. The most stable configurations obtained for Au13_{13} and Au19_{19} clusters are amorphous instead of icosahedral or fcc-like, while the electronic density of states sensitively depend on the cluster geometry. Dramatic odd-even alternative behaviors are obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of gold clusters. The size evolution of electronic properties is discussed and the theoretical ionization potentials of Aun_n clusters compare well with experiments.Comment: 6 pages, 7 figure

    Assessing the damming effects on runoff using a multiple linear regression model: A case study of the Manwan Dam on the Lancang River

    Get PDF
    AbstractThe Lancang River in Yunnan Province, with a length of 1170km and a 1780-m drop from northwest to southeast, is the most controversial river in southwest China because 14 cascade hydropower stations have been planned on the main waterway. The Manwan Dam, the first of the 14 dams, began operating in 1993, and the associated downstream runoff may have been affected by its construction. To assess this impact, we first investigated the relationships between monthly runoff observed from the Gajiu station and meteorological data obtained from four meteorological gauging stations with a time-lag of 0-3 months over the pre-dam period (1957-2000). Second, we established and validated a multiple linear regression equation employing monthly meteorological and hydrological data during the pre-dam period. Finally, we simulated the monthly runoff after dam construction (1993-2000) using the established equations and assessed the impact of dam construction on runoff by comparing the observed actual monthly runoff with the simulated monthly runoff. Our results suggested a very high hydro-meteorological correlation for the pre-dam period, which opened up the possibility of runoff forecasting. Further, the multiple linear regression equation displayed good simulation performance as coefficient of determination (R2) and the Nash-Suttcliffe coefficient (NS) reached 0.84 and 0.82 respectively. By comparing the observed and the predicted monthly runoff, we found that construction of the Manwan Dam caused a visible disturbance on monthly runoff that, with the disturbance value, displayed a multi-peak fluctuation of up-down variation in the annual hydrologic regime circl

    Oxygen tri-clusters make glass highly crack-resistant

    Get PDF
    Identifying key structural factors that surmount their intrinsic brittleness and poor crack initiation resistance (CR) is crucial for designing glass efficiently and predictably. In this study, we present three significant discoveries that contribute to the design of glasses with superior mechanical performances. Firstly, the CR of the aluminosilicate glasses exhibited a drastic increase when the alumina content surpasses a critical threshold. Secondly, the fraction of three-coordinated oxygens (i.e., oxygen tri-cluster fraction [(3)O]) was successfully quantified using our new Nuclear Magnetic Resonance technique. Thirdly, a correlation between the evolution trend of the [(3)O] and the alumina content was established, which aligns closely with the CR trend. These findings suggest that oxygen tri-clusters play a crucial role in significantly enhancing CR in aluminosilicate glasses.</p

    Nucleonic resonance excitations with linearly polarized photon in Îłp→ωp\gamma p\to \omega p

    Full text link
    In this work, an improved quark model approach to the ω\omega meson photo-production with an effective Lagrangian is presented. The {\it t}-channel {\it natural}-parity exchange is taken into account through the Pomeron exchange, while the {\it unnatural}-parity exchange is described by the π0\pi^0 exchange. With a very limited number of parameters, the available experimental data in the low energy regime can be consistently accounted for. We find that the beam polarization observables show sensitivities to some {\it s}-channel individual resonances in the SU(6)⊗O(3)SU(6)\otimes O(3) quark model symmetry limit. Especially, the two resonances P13(1720)P_{13}(1720) and F15(1680)F_{15}(1680), which belong to the representation [56,28,2,2,J][{\bf 56, ^2 8}, 2, 2, J], have dominant contributions over other excited states. Concerning the essential motivation of searching for "missing resonances" in meson photo-production, this approach provides a feasible framework, on which systematic investigations can be done.Comment: 16 pages, Revtex, 9 eps figures, to appear in PR

    Indeterminacy of Spatiotemporal Cardiac Alternans

    Full text link
    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Using numerical simulation and theoretical analysis, we show that the coexistence of multiple alternans patterns is induced by the interaction between electrotonic coupling and an instability in calcium cycling.Comment: 20 pages, 10 figures, to be published in Phys. Rev.
    • 

    corecore