303 research outputs found

    Heteroepitaxy of N-type β-Ga2O3 Thin Films on Sapphire Substrate by Low Pressure Chemical Vapor Deposition

    Get PDF
    This paper presents the heteroepitaxial growth of ultrawide bandgap β-Ga2O3 thin films on c-plane sapphire substrates by low pressure chemical vapor deposition. N-type conductivity in silicon (Si)-doped β-Ga2O3 films grown on sapphire substrate is demonstrated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O2) as precursors. The morphology, crystal quality, and properties of the as-grown thin films were characterized and analyzed by field emission scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, photoluminescence and optical, photoluminescence excitation spectroscopy, and temperature dependent van der Pauw/Hall measurement. The optical bandgap is ∼4.76 eV, and room temperature electron mobility of 42.35 cm2/V s was measured for a Si-doped heteroepitaxial β-Ga2O3 film with a doping concentration of 1.32 × 1018 cm−3

    Beta-Ga2O3 MOSFETs with near 50 GHz fMAX and 5.4 MV/cm average breakdown field

    Full text link
    This letter reports high-performance $\mathrm{\beta} Ga2O3 thin channel MOSFETs with T-gate and degenerately doped source/drain contacts regrown by MOCVD. Gate length scaling (LG= 160-200 nm) leads to a peak drain current (ID,MAX) of 285 mA/mm and peak trans-conductance (gm) of 52 mS/mm at 10 V drain bias with 23.5 Ohm mm on resistance (Ron). A low metal/n+ contact resistance of 0.078 Ohm mm was extracted from TLM measurement. Ron is dominated by interface resistance between channel and regrown layer. A gate-to-drain breakdown voltage of 192 V is measured for LGD = 355 nm resulting in average breakdown field (E_AVG) of 5.4 MV/cm. This E_AVG is the highest reported among all sub-micron gate length lateral FETs. RF measurements on 200 nm Silicon Nitride (Si3N4) passivated device shows a current gain cut off frequency (f_T) of 11 GHz and record power gain cut off frequency (f_MAX) of 48 GHz. The f_T.V_Br product is 2.11 THz.V for 192 V breakdown voltage. The switching figure of merit exceeds that of silicon and is comparable to mature wide-band gap devices

    7.86 kV GaN-on-GaN PN Power Diode with BaTiO3 for Electrical Field Management

    Full text link
    Device based on GaN have great potential for high power switching applications due to its high breakdown field and high electron mobility. In this work, we present the device design of a vertical GaN-on-GaN PN power diode using high dielectric constant (high-k) dielectrics for electrical field management and high breakdown voltages, in together with guard-rings and a field plate. The fabricated diodes with a 57 um thick drift layer demonstrated a breakdown voltage of 7.86 kV on a bulk GaN substrate. The device has an on-resistance of 2.8 mohm.cm2 and a Baliga figure of merit of 22 GW/cm2.Comment: 4 pages, 6 figure

    A lightweight deep learning model for ocean eddy detection

    Get PDF
    Ocean eddies are typical oceanic mesoscale phenomena that are numerous, widely distributed and have high energy. Traditional eddy detection methods are mainly based on physical mechanisms with high accuracy. However, the large number of steps and complex parameter settings limit their applicability for most users. With the rapid development of deep learning techniques, object detection models have been broadly used in the field of ocean remote sensing. This paper proposes a lightweight eddy detection model, ghost eddy detection YOLO (GED-YOLO), based on sea level anomaly data and the “You Only Look Once” (YOLO) series models. The proposed model used ECA+GhostNet as the backbone network and an atrous spatial pyramid pooling network as the feature enhancement network. The ghost eddy detection path aggregation network was proposed for feature fusion, which reduced the number of model parameters and improved the detection performance. The experimental results showed that GED-YOLO achieved better detection precision and smaller parameter size. Its mAP was 95.11% and the parameter size was 22.56 MB. In addition, the test experiment results showed that GED-YOLO had similar eddy detection performance and faster detection speed compared to the traditional physical method
    corecore