1,037 research outputs found

    Determination of Dark Matter Halo Mass from Dynamics of Satellite Galaxies

    Full text link
    We show that the mass of a dark matter halo can be inferred from the dynamical status of its satellite galaxies. Using 9 dark-matter simulations of halos like the Milky Way (MW), we find that the present-day substructures in each halo follow a characteristic distribution in the phase space of orbital binding energy and angular momentum, and that this distribution is similar from halo to halo but has an intrinsic dependence on the halo formation history. We construct this distribution directly from the simulations for a specific halo and extend the result to halos of similar formation history but different masses by scaling. The mass of an observed halo can then be estimated by maximizing the likelihood in comparing the measured kinematic parameters of its satellite galaxies with these distributions. We test the validity and accuracy of this method with mock samples taken from the simulations. Using the positions, radial velocities, and proper motions of 9 tracers and assuming observational uncertainties comparable to those of MW satellite galaxies, we find that the halo mass can be recovered to within ∼\sim40%. The accuracy can be improved to within ∼\sim25% if 30 tracers are used. However, the dependence of the phase-space distribution on the halo formation history sets a minimum uncertainty of ∼\sim20% that cannot be reduced by using more tracers. We believe that this minimum uncertainty also applies to any mass determination for a halo when the phase space information of other kinematic tracers is used.Comment: Accepted for publication in ApJ, 18 pages, 13 figure

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde

    Modified Hertz-damp model for base-isolated structural pounding simulation under near-fault earthquakes

    Get PDF
    Pounding phenomenon between base-isolated structures under near-fault earthquakes has been widely investigated with various impact models around the world. Firstly, the existing impact analysis models are summarized and discussed in this paper. For the Hertz-damp impact model, the damping constant does not coincide with its physical fact. Then, the damping constant in the Hertz-damp impact analysis model was modified based on the Hertz theory. Next, the approximate formula of the damping constant is theoretically derived, and the effectiveness is verified by a simulation analysis. The numerical results show that the pounding can significantly increase the floor acceleration, especially at the isolation layer. In addition, the impact stiffness has a significant effect on the acceleration response, and the inter-story drifts are also sensitive to the variety of impact stiffness. The simulation results indicate that excessive flexibility at the base-isolated system may lead to a susceptible pounding with a limited seismic gap
    • …
    corecore