1,589 research outputs found

    Inducing Effect on the Percolation Transition in Complex Networks

    Full text link
    Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolating cluster. Here we study this inducing effect on the classical site percolation and K-core percolation, showing that the inducing effect always causes a discontinuous percolation transition. We precisely predict the percolation threshold and core size for uncorrelated random networks with arbitrary degree distributions. For low-dimensional lattices the percolation threshold fluctuates considerably over realizations, yet we can still predict the core size once the percolation occurs. The core sizes of real-world networks can also be well predicted using degree distribution as the only input. Our work therefore provides a theoretical framework for quantitatively understanding discontinuous breakdown phenomena in various complex systems.Comment: Main text and appendices. Title has been change

    The puzzle of anomalously large isospin violations in η(1405/1475)→3π\eta(1405/1475)\to 3\pi

    Full text link
    The BES-III Collaboration recently report the observation of anomalously large isospin violations in J/ψ→γη(1405/1475)→γπ0f0(980)→γ+3πJ/\psi\to \gamma\eta(1405/1475) \to \gamma \pi^0 f_0(980)\to \gamma +3\pi, where the f0(980)f_0(980) in the ππ\pi\pi invariant mass spectrum appears to be much narrower (∼\sim 10 MeV) than the peak width (∼\sim50 MeV) measured in other processes. We show that a mechanism, named as triangle singularity (TS), can produce a narrow enhancement between the charged and neutral KKˉK\bar{K} thresholds, i.e., 2mK±∼2mK02m_{K^\pm}\sim 2m_{K^0}. It can also lead to different invariant mass spectra for η(1405/1475)→a0(980)π\eta(1405/1475)\to a_0(980)\pi and KKˉ∗+c.c.K\bar{K}^*+c.c., which can possibly explain the long-standing puzzle about the need for two close states η(1405)\eta(1405) and η(1475)\eta(1475) in ηππ\eta\pi\pi and KKˉπK\bar{K}\pi, respectively. The TS could be a key to our understanding of the nature of η(1405/1475)\eta(1405/1475) and advance our knowledge about the mixing between a0(980)a_0(980) and f0(980)f_0(980).Comment: 4 pages and 7 eps figures; Journal-matched versio
    • …
    corecore