4 research outputs found

    Memory-Augmented LLM Personalization with Short- and Long-Term Memory Coordination

    Full text link
    Large Language Models (LLMs), such as GPT3.5, have exhibited remarkable proficiency in comprehending and generating natural language. However, their unpersonalized generation paradigm may result in suboptimal user-specific outcomes. Typically, users converse differently based on their knowledge and preferences. This necessitates the task of enhancing user-oriented LLM which remains unexplored. While one can fully train an LLM for this objective, the resource consumption is unaffordable. Prior research has explored memory-based methods to store and retrieve knowledge to enhance generation without retraining for new queries. However, we contend that a mere memory module is inadequate to comprehend a user's preference, and fully training an LLM can be excessively costly. In this study, we propose a novel computational bionic memory mechanism, equipped with a parameter-efficient fine-tuning schema, to personalize LLMs. Our extensive experimental results demonstrate the effectiveness and superiority of the proposed approach. To encourage further research into this area, we are releasing a new conversation dataset generated entirely by LLM based on an open-source medical corpus, as well as our implementation code

    RexUIE: A Recursive Method with Explicit Schema Instructor for Universal Information Extraction

    Full text link
    Universal Information Extraction (UIE) is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas. However, previous works have only achieved limited success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE), which fall short of being authentic UIE models particularly when extracting other general schemas such as quadruples and quintuples. Additionally, these models used an implicit structural schema instructor, which could lead to incorrect links between types, hindering the model's generalization and performance in low-resource scenarios. In this paper, we redefine the authentic UIE with a formal formulation that encompasses almost all extraction schemas. To the best of our knowledge, we are the first to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which is a Recursive Method with Explicit Schema Instructor for UIE. To avoid interference between different types, we reset the position ids and attention mask matrices. RexUIE shows strong performance under both full-shot and few-shot settings and achieves State-of-the-Art results on the tasks of extracting complex schemas

    PPN: Parallel Pointer-based Network for Key Information Extraction with Complex Layouts

    Full text link
    Key Information Extraction (KIE) is a challenging multimodal task that aims to extract structured value semantic entities from visually rich documents. Although significant progress has been made, there are still two major challenges that need to be addressed. Firstly, the layout of existing datasets is relatively fixed and limited in the number of semantic entity categories, creating a significant gap between these datasets and the complex real-world scenarios. Secondly, existing methods follow a two-stage pipeline strategy, which may lead to the error propagation problem. Additionally, they are difficult to apply in situations where unseen semantic entity categories emerge. To address the first challenge, we propose a new large-scale human-annotated dataset named Complex Layout form for key information EXtraction (CLEX), which consists of 5,860 images with 1,162 semantic entity categories. To solve the second challenge, we introduce Parallel Pointer-based Network (PPN), an end-to-end model that can be applied in zero-shot and few-shot scenarios. PPN leverages the implicit clues between semantic entities to assist extracting, and its parallel extraction mechanism allows it to extract multiple results simultaneously and efficiently. Experiments on the CLEX dataset demonstrate that PPN outperforms existing state-of-the-art methods while also offering a much faster inference speed
    corecore