94 research outputs found

    1,4-Dimeth­oxy-2,5-bis­{2-[4-(trifluoro­meth­yl)phen­yl]ethyn­yl}benzene

    Get PDF
    The asymmetric unit of the title compound, C26H16F6O2, contains one half of the mol­ecule situated on an inversion centre. In the rod-like mol­ecule, the two terminal benzene rings form a dihedral angle of 71.9 (1)° with the central benzene ring. The trifluoro­methyl group is rotationally disordered over two orientations in a 0.53 (1):0.47 (1) ratio. The crystal packing exhibits no classical inter­molecular inter­actions

    Calculation of oxygen diffusion coefficients in oxide films formed on low-temperature annealed Zr alloys and their related corrosion behavior

    Get PDF
    The growth of oxide film, which results from the inward oxygen diffusion from a corrosive environment, is a critical consideration for the corrosion resistance of zirconium alloys. This work calculates the oxygen diffusion coefficients in the oxide films formed on zirconium alloys annealed at 400~500 °C and investigates the related corrosion behavior. The annealed samples have a close size for the second-phase particles but a distinctive hardness, indicating the difference in substrate conditions. The weight gain of all samples highly follows parabolic laws. The weight gain of the sample annealed at 400 °C has the fastest increase rate at the very beginning of the corrosion test, but its oxide film has the slowest growth rate as the corrosion proceeds. By contrast, the sample annealed at 500 °C shows the lowest weight gain but the highest corrosion rate constant. Such a corrosion behavior is attributed to the amount of defects existing in the oxide film formed on the annealed samples; fewer defects would provide a lower fraction of short-circuit diffusion in total diffusion, resulting in a lower diffusion coefficient of oxygen in the oxide film, thereby producing better corrosion resistance. This is consistent with the calculated diffusion coefficients of oxygen in the oxide films: 3.252 × 10−11 cm2/s, 3.464 × 10−11 cm2/s and 3.740 × 10−11 cm2/s for the samples annealed at 400 °C, 450 °C, and 500 °C, respectively

    Cam Drive Step Mechanism of a Quadruped Robot

    Get PDF
    Bionic quadruped robots received considerable worldwide research attention. For a quadruped robot walking with steady paces on a flat terrain, using a cam drive control mechanism instead of servomotors provides theoretical and practical benefits as it reduces the system weight, cost, and control complexities; thus it may be more cost beneficial for some recreational or household applications. This study explores the robot step mechanism including the leg and cam drive control systems based on studying the bone structure and the kinematic step sequences of dog. The design requirements for the cam drive robot legs have been raised, and the mechanical principles of the leg operating mechanism as well as the control parameters have been analyzed. A cam drive control system was constructed using three cams to control each leg. Finally, a four-leg demo robot was manufactured for experiments and it showed stable walking patterns on a flat floor

    DFT Study on Electronic Interactions of Pt, Pd and Au Atoms with γ-Al2O3

    Get PDF
    The metal-support electronic interaction of dispersed Pt, Pd and Au layers on γ-Al2O3 is studied by density functional theory (DFT) calculations. The results indicate that electrons transfer significantly between the contacting layers of Au, Pt or Pd and the γ-Al2O3. Fukui function calculation results exhibit the electrophilicity of Al and O atoms on the Pt-supported surface is the greatest, while their nucleophilicity is the weakest. DOS calculation results demonstrate that the metal d orbital and O 2p orbital participate in the interactions, and the interaction between Pt 5d orbital and O 2p orbital is the strongest.DOI: http://dx.doi.org/10.5755/j01.ms.24.3.17855</span

    Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed nicrbsi coatings

    Get PDF
    Particle size is a critical consideration for many powder coating-related industries since it significantly influences the properties of the produced materials. However, the effect of particle size on the characteristics of plasma sprayed NiCrBSi coatings is not well understood. This work investigates the microstructures, hardness and electrochemical corrosion behavior of plasma sprayed NiCrBSi coatings synthesized using different-sized powders. All coatings mainly consist of Ni, N3B, CrB, Cr7C3 and Cr3C2 phases. The coatings produced by small particles (50–75 μm) exhibit lower porosity (2.0 ± 0.8%). Such coatings show a higher fraction (15.5 vol.%) of the amorphous phase and lower hardness (700 HV0.5) than the counterparts (8.7 vol.% and 760 HV0.5, respectively) produced by large particles (75–100 μm) with higher porosity (3.0 ± 1.6%). Meanwhile, the coatings produced from smaller particles possess a larger number of non-bonded boundaries, leading to the easier penetration of corrosive medium, as well as a higher corrosion current density (0.254 ± 0.062 μA/cm2) and a lower charge transfer resistance (0.37 ± 0.07 MΩ cm2). These distinctions are attributed to particle size-induced different melting degrees and stackings of in-flight particles during deposition

    Corrosion behavior and characteristics of passive films of laser powder bed fusion produced Ti-6Al-4V in dynamic Hank’s solution

    Get PDF
    The corrosion behavior of laser powder bed fusion produced (L-PBF-produced) titanium alloys involving flowing body fluid is still unclear. Therefore, this work investigates in vitro corrosion behavior and the characteristics of passive films formed on L-PBF-produced Ti–6Al–4V in both static and dynamic Hank’s solutions. Electrochemical measurements, immersion tests, X-ray photoelectron spectroscopy and scanning electron microscopy were conducted. In comparison to the L-PBF-produced Ti–6Al–4V in static Hank’s solution, the samples showed lower charge transfer resistance and higher passivation current density (anodic current density as well) in dynamic Hank’s solution. Meanwhile, a more apparent deposition of apatite and hydroxyapatite is found on the L-PBF-produced Ti–6Al–4V in dynamic Hank’s solution. Such outcomes mainly result from the enhancement of film/solution interfacial transportation in dynamic Hank’s solution. The dynamic Hank’s solution provides more calcium and phosphate ions to the surface of the passive film and also takes away the dissolved metal ions. Therefore, more salt deposition and a lower-quality passive film are found

    High intensity interval training vs. moderate intensity continuous training on aerobic capacity and functional capacity in patients with heart failure: a systematic review and meta-analysis

    Get PDF
    BackgroundExercise training is commonly employed as a efficacious supplementary treatment for individuals suffering from heart failure, but the optimal exercise regimen is still controversial. The objective of the review was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the exercise capacity, cardiac function, quality of life (QoL) and heart rate among patients with heart failure with reduced ejection fraction.MethodsA systematic search was performed using the following eight databases from their inception to July 5, 2023: PubMed, Web of Science, Embase, Cochrane Library, Clinical Trials, China Knowledge Network, Wan fang Data, and the China Biology Medicine databases. The meta-analysis results were presented as mean difference (MD) and 95% confidence interval (CI). The Cochrane Risk of Bias tool was used for the included studies. The Grading of Recommendations Assessment, Development, and Evaluations was used to assess the certainty of evidence.ResultsThirteen randomized controlled trials were included in the study. The results showed that HIIT had a significant positive effect on peak oxygen uptake (MD = 1.78, 95% CI for 0.80–2.76), left ventricular ejection fraction (MD = 3.13, 95% CI for 1.25–5.02), six-minute walk test (MD = 28.13, 95% CI for 14.56–41.70), and Minnesota Living with Heart Failure Questionnaire (MD = −4.45, 95% CI for −6.25 to −2.64) compared to MICT. However, there were no statistically significant differences observed in resting heart rate and peak heart rate.ConclusionsHIIT significantly improves peak oxygen uptake, left ventricular ejection fraction, six-minute walk test, and Minnesota Living with Heart Failure Questionnaire in patients with heart failure with reduced ejection fraction. Additionally, HIIT exhibits greater effectiveness in improving peak oxygen uptake among patients with lower body mass index.Systematic Review Registrationhttps://www.doi.org/10.37766/inplasy2023.7.0100, identifier (INPLASY2023.7.0100)

    Proteomics Study of Peripheral Blood Mononuclear Cells (PBMCs) in Autistic Children

    Get PDF
    Autism is one of the most common neurological developmental disorder associated with social isolation and restricted interests in children. The etiology of this disorder is still unknown. There is neither any confirmed laboratory test nor any effective therapeutic strategy to diagnose or cure it. To search for biomarkers for early detection and exploration of the disease mechanisms, here, we investigated the protein expression signatures of peripheral blood mononuclear cells (PBMCs) in autistic children compared with healthy controls by using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach. The results showed a total of 41 proteins as differentially expressed in autistic group as compared to control. These proteins are found associated with metabolic pathways, endoplasmic reticulum (ER) stress and protein folding, endocytosis, immune and inflammatory response, plasma lipoprotein particle organization, and cell adhesion. Among these, 17 proteins (13 up-regulated and four down-regulated) are found to be linked with mitochondria. Eight proteins including three already reported proteins in our previous studies were selected to be verified. Five already reported autism associated pro-inflammatory cytokines [interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-12, and tumor necrosis factor-α (TNF-α)] were detected in plasma by enzyme-linked immunosorbent assay (ELISA) analysis. The results were consistent with proteomic results and reports from previous literature. These results proposed that PBMCs from autistic children might be activated, and ER stress, unfolded protein response (UPR), acute-phase response (APR), inflammatory response, and endocytosis may be involved in autism occurrence. These reported proteins may serve as potential biomarkers for early diagnosis of autism. More specifically, simultaneous detection of three proteins [complement C3 (C3), calreticulin (CALR), and SERPINA1] in the plasma and PBMCs could increase the authenticity of detection

    MicroRNA-362-5p promotes the proliferation and inhibits apoptosis of trophoblast cells via targeting glutathione-disulfide reductase

    No full text
    Gestational diabetes mellitus (GDM), a common complication of pregnancy, harms the health of pregnant women and fetuses. MicroRNAs (miRNAs) dysregulation in placenta is involved in GDM. Herein, we explored the roles of miR-362-5p in GDM. After high glucose (HG) treated HTR-8/SVneo cells, CCK-8 and flow cytometry were conducted to assess the capability of the proliferation and apoptosis, respectively. The data demonstrated that HG inhibited proliferation and induced apoptosis of HTR-8/SVneo cells. MiR-362-5p level was reduced in HG-treated cells and placenta tissues of GDM patients, measured by qPCR. Overexpressed miR-362-5p accelerated the proliferation and restrained apoptosis of HG-treated cells. Furthermore, glutathione-disulfide reductase (GSR) was verified as a target of miR-362-5p, through TargetScan database and dual-luciferase reporter assay. GSR was upregulated in GDM placenta tissues and was negatively regulated by miR-362-5p. Enforced GSR level abolished the effects of miR-362-5p overexpression on the proliferation and apoptosis of HTR-8/SVneo cells. Furthermore, miR-362-5p increased p-PI3K, p-AKT and bcl-2, while reduced bax and cleaved caspase3, which were abolished by GSR. In conclusion, miR-362-5p promoted cell proliferation and inhibited apoptosis via targeting GSR and activating PI3K/AKT pathway. The findings mentioned above suggested that miR-362-5p might be a therapy target of GDM
    • …
    corecore