34 research outputs found

    Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture

    Get PDF
    ヒトのiPS細胞から腱の細胞を作製する --アキレス腱断裂のラットに移植し、機能回復を確認--. 京都大学プレスリリース. 2021-08-31.Repairing tendon injuries with stem cells. 京都大学プレスリリース. 2021-08-31.Tendon self-renewal is a rare occurrence because of the poor vascularization of this tissue; therefore, reconstructive surgery using autologous tendon is often performed in severe injury cases. However, the post-surgery re-injury rate is relatively high, and the collection of autologous tendons leads to muscle weakness, resulting in prolonged rehabilitation. Here, we introduce an induced pluripotent stem cell (iPSC)-based technology to develop a therapeutic option for tendon injury. First, we derived tenocytes from human iPSCs by recapitulating the normal progression of step-wise narrowing fate decisions in vertebrate embryos. We used single-cell RNA sequencing to analyze the developmental trajectory of iPSC-derived tenocytes. We demonstrated that iPSC-tenocyte grafting contributed to motor function recovery after Achilles tendon injury in rats via engraftment and paracrine effects. The biomechanical strength of regenerated tendons was comparable to that of healthy tendons. We suggest that iPSC-tenocytes will provide a therapeutic option for tendon injury

    Enhanced chondrogenic differentiation of iPS cell-derived mesenchymal stem/stromal cells via neural crest cell induction for hyaline cartilage repair

    Get PDF
    iPS細胞由来の間葉系幹細胞から高品質な軟骨を作製. 京都大学プレスリリース. 2023-06-08.Generation of high-quality cartilage from iPS cell-derived mesenchymal stem cells. 京都大学プレスリリース. 2023-06-15.Background: To date, there is no effective long-lasting treatment for cartilage tissue repair. Primary chondrocytes and mesenchymal stem/stromal cells are the most commonly used cell sources in regenerative medicine. However, both cell types have limitations, such as dedifferentiation, donor morbidity, and limited expansion. Here, we report a stepwise differentiation method to generate matrix-rich cartilage spheroids from induced pluripotent stem cell-derived mesenchymal stem/stromal cells (iMSCs) via the induction of neural crest cells under xeno-free conditions. Methods: The genes and signaling pathways regulating the chondrogenic susceptibility of iMSCs generated under different conditions were studied. Enhanced chondrogenic differentiation was achieved using a combination of growth factors and small-molecule inducers. Results: We demonstrated that the use of a thienoindazole derivative, TD-198946, synergistically improves chondrogenesis in iMSCs. The proposed strategy produced controlled-size spheroids and increased cartilage extracellular matrix production with no signs of dedifferentiation, fibrotic cartilage formation, or hypertrophy in vivo. Conclusion: These findings provide a novel cell source for stem cell-based cartilage repair. Furthermore, since chondrogenic spheroids have the potential to fuse within a few days, they can be used as building blocks for biofabrication of larger cartilage tissues using technologies such as the Kenzan Bioprinting method

    Induction of functional xeno-free MSCs from human iPSCs via a neural crest cell lineage

    Get PDF
    iPS細胞から間葉系幹細胞の誘導方法を確立 --動物由来成分を含まず再生医療への利用に期待. 京都大学プレスリリース. 2022-09-15.A new method for inducing mesenchymal stem cells from iPS cells without using animal-derived components. 京都大学プレスリリース. 2022-09-27.Mesenchymal stem/stromal cells (MSCs) are adult multipotent stem cells. Here, we induced MSCs from human induced pluripotent stem cells (iPSCs) via a neural crest cell (NCC) lineage under xeno-free conditions and evaluated their in vivo functions. We modified a previous MSC induction method to work under xeno-free conditions. Bovine serum albumin-containing NCC induction medium and fetal bovine serum-containing MSC induction medium were replaced with xeno-free medium. Through our optimized method, iPSCs differentiated into MSCs with high efficiency. To evaluate their in vivo activities, we transplanted the xeno-free-induced MSCs (XF-iMSCs) into mouse models for bone and skeletal muscle regeneration and confirmed their regenerative potency. These XF-iMSCs mainly promoted the regeneration of surrounding host cells, suggesting that they secrete soluble factors into affected regions. We also found that the peroxidasin and IGF2 secreted by the XF-iMSCs partially contributed to myotube differentiation. These results suggest that XF-iMSCs are important for future applications in regenerative medicine

    In vivo regeneration of rat laryngeal cartilage with mesenchymal stem cells derived from human induced pluripotent stem cells via neural crest cells

    Get PDF
    The laryngotracheal cartilage is a cardinal framework for the maintenance of the airway for breathing, which occasionally requires reconstruction. Because hyaline cartilage has a poor intrinsic regenerative ability, various regenerative approaches have been attempted to regenerate laryngotracheal cartilage. The use of autologous mesenchymal stem cells (MSCs) for cartilage regeneration has been widely investigated. However, long-term culture may limit proliferative capacity. Human-induced pluripotent stem cell-derived MSCs (iMSCs) can circumvent this problem due to their unlimited proliferative capacity. This study aimed to investigate the efficacy of iMSCs in the regeneration of thyroid cartilage in immunodeficient rats. Herein, we induced iMSCs through neural crest cell intermediates. For the relevance to prospective future clinical application, induction was conducted under xeno-free/serum-free conditions. Then, clumps fabricated from an iMSC/extracellular matrix complex (C-iMSC) were transplanted into thyroid cartilage defects in immunodeficient rats. Histological examinations revealed cartilage-like regenerated tissue and human nuclear antigen (HNA)-positive surviving transplanted cells in the regenerated lesion. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells. These results indicated that the transplanted C-iMSCs promoted thyroid cartilage regeneration and some of the iMSCs differentiated into chondrogenic lineage cells. Induced MSCs may be a promising candidate cell therapy for human laryngotracheal reconstruction

    Laryngeal Cartilage Regeneration of Nude Rats by Transplantation of Mesenchymal Stem Cells Derived from Human-Induced Pluripotent Stem Cells

    Get PDF
    Previous studies transplanted human-induced pluripotent stem cells (hiPSCs)-derived mesenchymal stem cells (iMSCs) into thyroid cartilage defect of X-liked severe combined immunodeficiency (X-SCID) rats and confirmed transplanted cell survival and cartilage regeneration. Thus, this study aimed to investigate the contribution of iMSC transplantation to thyroid cartilage regeneration of nude rats. iMSCs were induced from hiPSCs via a neural crest cell lineage. Then, clumps formed from an iMSC/extracellular matrix complex were transplanted into thyroid cartilage defects in nude rats. The larynx was removed and histological and immunohistochemical analyses were performed 4 or 8 weeks after the transplantation. Human nuclear antigen (HNA)-positive cells were observed in 11 of 12 (91.7%) rats, which indicated that transplanted iMSCs survived in thyroid cartilage defects in nude rats. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells in 8 of 12 rats (66.7%), which indicated cartilage-like regeneration. Cartilage-like regeneration in nude rats in this study was comparable to the previous report on X-SCID rats (HNA-positive cells were observed in all 14 rats and cartilage-like regeneration was observed in 10 of 14 rats). This result suggests that nude rats could be an alternative to X-SCID rats in thyroid cartilage regeneration experiments using iMSCs, and this nude rat cartilage transplantation model may develop cartilage regeneration research concerning fewer problems such as infection due to immunosuppression

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Generation and Applications of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology and isolated from the bone marrow via plastic adhesion. Their multipotency and immunoregulatory properties make MSCs possible therapeutic agents, and an increasing number of publications and clinical trials have highlighted their potential in regenerative medicine. However, the finite proliferative capacity of MSCs limits their scalability and global dissemination as a standardized therapeutic product. Furthermore, adult tissue provenance could constrain accessibility, impinge on cellular potency, and incur greater exposure to disease-causing pathogens based on the donor. These issues could be circumvented by the derivation of MSCs from pluripotent stem cells. In this paper, we review methods that induce and characterize MSCs derived from induced pluripotent stem cells (iPSCs) and introduce MSC applications to disease modeling, pathogenic mechanisms, and drug discovery. We also discuss the potential applications of MSCs in regenerative medicine including cell-based therapies and issues that should be overcome before iPSC-derived MSC therapy will be applied in the clinic

    An Aerodynamic Load Correction Method for HFFB Technique Based on Signal Decoupling and an Intelligent Optimization Algorithm

    No full text
    In high-frequency force balance (HFFB) wind tunnel tests, the aerodynamic wind loads at the base of the building model are usually amplified by the model-balance system. This paper proposes a new method for eliminating such an amplification effect. Firstly, the measured base bending moment signals are decoupled into independent components. Then, an optimization model is established to represent the problem of identifying the natural frequencies and damping ratios for the different modes of the model-balance system. Finally, the genetic algorithm (GA) is employed to seek the solution to the optimization problem, and the base bending moment is corrected through the identified dynamic parameters of the model-balance system. Compared to the conventionally used knocking method, the proposed method requires no extra knocking tests and can take the aerodynamic damping of the model-balance system into account. An engineering case, the Guangzhou East Tower (GZET), is taken as an example to show the effectiveness of the method

    Photochemical reaction of superoxide radicals with 1-naphthol

    No full text
    he photochemical reactions between 1-naphthol (1-NP) and superoxide anion radical (O2•−) were investigated in detail by using 365 nm UV irradiation. The results showed that the conversion rate of 1-naphthol decreased with the increase of the initial concentration of 1-naphthol, while the raising pH and riboflavin concentration accelerated the photochemical reaction. The second-order reaction rate constant was estimated to be (3.64 0.17) 108 L mol−1 s−1. The major photolysis products identified by using gas chromatography-mass spectrum (GC-MS) were 1, 4-naphquinone and 2, 3-epoxyresin-2, 3-dihydro-1, 4-naphquinone, and their reaction pathways were also discussed. An atmospheric model showed that both bulk water reaction and heterogeneous surface reaction deserved attentions in atmospheric aqueous chemistry.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Long-term drainage induces divergent changes of soil organic carbon contents but enhances microbial carbon accumulation in fen and bog

    No full text
    Drainage-induced changes in wetland soil organic carbon (SOC) composition and origin are poorly investigated compared to SOC stocks. Here, using soil fractionation and neutral sugars, we find that long-term drainage increased both plant- and microbial-dominated (i.e., light and mineral-associated, respectively) fractions in a fen while microbial residues increased at the expense of plant residues in a drained bog, accompanied by divergent changes of SOC contents. These findings highlight stimulated soil microbial carbon pump in drained wetlands, whose efficiency deserves further investigation related to wetland SOC persistence
    corecore