363 research outputs found
Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase.
BackgroundBacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism.ResultsBT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications.ConclusionsStructural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively
Birthrates and delay times of Type Ia supernovae
Type Ia supernovae (SNe Ia) play an important role in diverse areas of
astrophysics, from the chemical evolution of galaxies to observational
cosmology. However, the nature of the progenitors of SNe Ia is still unclear.
In this paper, according to a detailed binary population synthesis study, we
obtained SN Ia birthrates and delay times from different progenitor models, and
compared them with observations. We find that the Galactic SN Ia birthrate from
the double-degenerate (DD) model is close to those inferred from observations,
while the birthrate from the single-degenerate (SD) model accounts for only
about 1/2-2/3 of the observations. If a single starburst is assumed, the
distribution of the delay times of SNe Ia from the SD model is a weak
bimodality, where the WD + He channel contributes to the SNe Ia with delay
times shorter than 100Myr, and the WD + MS and WD + RG channels to those with
age longer than 1Gyr.Comment: 11 pages, 2 figures, accepted by Science in China Series G (Dec.30,
2009
Habitable Zones and UV Habitable Zones around Host Stars
Ultraviolet radiation is a double-edged sword to life. If it is too strong,
the terrestrial biological systems will be damaged. And if it is too weak, the
synthesis of many biochemical compounds can not go along. We try to obtain the
continuous ultraviolet habitable zones, and compare the ultraviolet habitable
zones with the habitable zones of host stars. Using the boundary ultraviolet
radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable
zones of host stars with masses from 0.08 to 4.00 \mo. For the host stars with
effective temperatures lower than 4,600 K, the ultraviolet habitable zones are
closer than the habitable zones. For the host stars with effective temperatures
higher than 7,137 K, the ultraviolet habitable zones are farther than the
habitable zones. For hot subdwarf as a host star, the distance of the
ultraviolet habitable zone is about ten times more than that of the habitable
zone, which is not suitable for life existence.Comment: 5 pages, 3 figure
Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation-induced damage
Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation‐resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ‐irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein‐intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties
Exploration of Uncharted Regions of the Protein Universe
Determination of first protein structures, from hundreds of families of unknown function, have shown that divergence, rather than novelty, is the dominant force that shapes the evolution of the protein universe
Numerical modelling of tertiary tides
Stellar systems consisting of multiple stars tend to undergo tidal
interactions when the separations between the stars are short. While tidal
phenomena have been extensively studied, a certain tidal effect exclusive to
hierarchical triples (triples in which one component star has a much wider
orbit than the others) has hardly received any attention, mainly due to its
complexity and consequent resistance to being modelled. This tidal effect is
the tidal perturbation of the tertiary by the inner binary, which in turn
depletes orbital energy from the inner binary, causing the inner binary
separation to shrink. In this paper, we develop a fully numerical simulation of
these "tertiary tides" by modifying established tidal models. We also provide
general insight as to how close a hierarchical triple needs to be in order for
such an effect to take place, and demonstrate that our simulations can
effectively retrieve the orbital evolution for such systems. We conclude that
tertiary tides are a significant factor in the evolution of close hierarchical
triples, and strongly influence at least ~ 1% of all multiple star systems.publishe
Multidifferential study of identified charged hadron distributions in -tagged jets in proton-proton collisions at 13 TeV
Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against
a boson. The charged-hadron distributions are studied longitudinally and
transversely to the jet direction for jets with transverse momentum 20 GeV and in the pseudorapidity range . The
data sample was collected with the LHCb experiment at a center-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of 1.64 fb. Triple
differential distributions as a function of the hadron longitudinal momentum
fraction, hadron transverse momentum, and jet transverse momentum are also
measured for the first time. This helps constrain transverse-momentum-dependent
fragmentation functions. Differences in the shapes and magnitudes of the
measured distributions for the different hadron species provide insights into
the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb
public pages
Study of the decay
The decay is studied
in proton-proton collisions at a center-of-mass energy of TeV
using data corresponding to an integrated luminosity of 5
collected by the LHCb experiment. In the system, the
state observed at the BaBar and Belle experiments is
resolved into two narrower states, and ,
whose masses and widths are measured to be where the first uncertainties are statistical and the second
systematic. The results are consistent with a previous LHCb measurement using a
prompt sample. Evidence of a new
state is found with a local significance of , whose mass and width
are measured to be and , respectively. In addition, evidence of a new decay mode
is found with a significance of
. The relative branching fraction of with respect to the
decay is measured to be , where the first
uncertainty is statistical, the second systematic and the third originates from
the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb
public pages
Measurement of the ratios of branching fractions and
The ratios of branching fractions
and are measured, assuming isospin symmetry, using a
sample of proton-proton collision data corresponding to 3.0 fb of
integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The
tau lepton is identified in the decay mode
. The measured values are
and
, where the first uncertainty is
statistical and the second is systematic. The correlation between these
measurements is . Results are consistent with the current average
of these quantities and are at a combined 1.9 standard deviations from the
predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb
public pages
- …