12 research outputs found
Geologic characteristics of deep water deposits and exploration discoveries in slope zones of fault lake basin: A case study of Paleogene Shahejie Formation in Banqiao-Qibei slope, Qikou sag, Bohai Bay Basin
Based on seismic, logging, formation testing, core and lab test data, this study analyzed the sequence division, facies features of deep water deposits and modes, development of large-scale gravity flow, reservoir physical properties and their main controlling factors, and proposed a classification standard and prediction method of favorable exploration areas in deep water area of the Bin1 oil layers of the lower sub-member of the first member of Paleogene Shahejie Formation in Banqiao-Qibei slope zone of Qikou sag, Bohai Bay Basin. The Bin1 oil layers can be divided into three fifth-order sequences, each less than 100 m thick; a set of gravity flow deposits were formed under deep water background in the slope zone, which contains sedimentary micro-facies such as main channel, distributary channel, channel margin, inter-channel mudstone, and turbidite sand sheet in areas without channels, and, in space, has inherited and constructive development features of multistages. It is a sedimentary sequence of fan delta – distal subaqueous fan – deep lake, and every distal subaqueous fan formed by gravity flow can be divided into inner-, middle- and outer fans. The cross-facies transported sands which are sourced from higher-sand-content major sands of delta front can form high quality reservoirs with an average porosity of 15.1% and geometric average permeability of 5.1×10−3 μm2. The main channel and distributary channel of distal subaqueous fan are the most favorable exploration zones. Key words: deep water deposit, slope zone, sandy debris flow, subaqueous fan, lithologic reservoir, Shahejie Formation, fault lake basin, Qikou sag, Bohai Bay Basi
A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China
Based on systematic coring of 500 m of Kong 2 Member of the Paleogene Kongdian Formation in Cangdong sag of Bohai Bay Basin, identification and XRD (X-Ray Diffraction) analysis of over 1000 thin sections, a simplified method to quantitatively calculate contents of fine grained minerals with conventional logging data such as acoustic travel time (AC) and density log (DEN) has been proposed, and a quick lithologic identification “green mode” has been worked out in this study. By fitting the relationship between normalization of logging curves and mineral content measured by XRD, the mineral contents of sections or wells not cored can be calculated to identify lithology. With this method, several dolomite sweet spot intervals and one sandstone sweet spot interval have been found in the Kong 2 Member of Cangdong sag, where high production oil and gas flows have been tapped from drilled wells. The study shows that the dolomite is in band distribution and enriched in local parts of the study area. This method is applicable to lithologic identification of fine grained deposits in front delta-lake basin center, especially lithologic identification of mud and dolomite dominated fine grained deposits with low sand content of semi-deep, deep lake facies. Key words: fine grained deposits, lithologic identification, dolomite, tight oil, reservoir sweet spot, Paleogene Kongdian Formation, Cangdong sag, Bohai Bay Basi
Development and exploration practice of the concept of hydrocarbon accumulation in rifted-basin troughs: A case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin
Based on the merged 3D seismic data, well logging, formation testing, analysis and testing data, the structural evolution, sedimentary reservoirs, thermal evolution of source rocks were investigated of Paleogene Kongdian Formation in the trough area of Cangdong sag, Bohai Bay Basin. A conventional-unconventional hydrocarbon accumulation pattern in the trough area of rifted basin was revealed. The reservoir forming elements in the trough area of Cangdong sag have a zonation feature in terms of reservoirs and source rocks. There are two types of reservoir forming models, primary trough and reformed trough. The formation and evolution of trough controlled the orderly distribution of conventional oil to unconventional oil in the trough. Particularly, structural reservoirs occur in the upper part of the trough, stratigraphic-lithologic reservoirs are likely to form in the delta front deposits at the outer ring of trough, the middle ring transitional belt is the favorable site for tight oil reservoirs, while the fine grain deposits zone in the inner ring is shale oil and gas exploration area. The study has pointed out the new domains and directions for searching reserves in the secondary exploration of mature oilfields. Key words: rifted basin, trough hydrocarbon accumulation, stratigraphic-lithologic reservoir, shale oil, orderly accumulation, Bohai Bay Basin, Cangdong sag, Paleogene Kongdian Formatio
Geologic features of fine-grained facies sedimentation and tight oil exploration: A case from the second Member of Paleogene Kongdian Formation of Cangdong sag, Bohai Bay Basin
Abstract: Based on analysis of successive and whole cores over six hundred meters from the second Member of Kongdian Formation (Kong 2 Member) of fine-grained facies zone in central lake basin of Cangdong sag, ten thousands of systematic and joint analysis data, and the matching logging data, the sedimentary characteristics in the fine-grained facies zone is examined by means of traditional petroleum geology, sedimentology, and new theory and method of tight oil and gas generation. The Kong 2 Member is the sedimentation during the maximum lake flooding in the Kongdian Formation. Fine-grained sedimentation of half-deep lake to deep lake are widely distributed, the fine-grained feldspar-quartz contained sedimentary rock, fine-grained mixed sedimentary rock, and dolomite are developed, and the clay rock is poorly developed. The fine-grained rocks have these features as follows: more rock compositions, less advantageous minerals; more debris minerals, less clay minerals; more analcites, less pyrites; more brittle minerals, less quartz; more rock types, less oil shale; more tight reservoirs with less non-cracked reservoirs; more high-quality source rocks, less non-source rocks; more high-frequency cycle sediments, less single sediments. These understandings updated the former view that only mud shale source rock was dominantly developed in the closed continental lake. With the help of geologic research and matched engineering technologies, several exploration wells have produced industrial oil flows, showing a good prospect of tight oil exploration in fine-grained facies zones of continental lacustrine basins. Key words: fine-grained sediment, fine-grained facies, tight oil, geologic features, exploration prospect, Cangdong sag, Bohai Bay Basi
The Occurrence Mechanism of Lacustrine Shale Oil in the Second Member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin
The lacustrine shale in the second member of the Kongdian Formation (Ek2) is the most significant target of shale oil exploration in the Cangdong Sag, Bohai Bay Basin, China. To investigate the occurrence mechanisms and to reveal the influencing factors of shale oil mobility in Ek2, a series of analyses (X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), total organic carbon (TOC) analysis, Rock-Eval pyrolysis, low-temperature nitrogen physisorption (LNP), mercury intrusion porosimetry (MIP), and multiple isothermal stage (MIS) pyrolysis) were conducted on samples collected from well cores in the Cangdong Sag. The results show that the lithofacies can be categorized as laminated felsic shales, laminated and massive mixed shales, and laminated and massive carbonate shales. The shales were characterized by a high organic matter abundance and moderate thermal evolution with good to excellent hydrocarbon generation potential and contained a high abundance of Type I and II1 kerogens. Laminated felsic shales and laminated mixed shales, compared with other lithofacies, had clear advantages in the amount of free hydrocarbon that can be volatilized from the rock (S1), the oil saturation index (OSI) value, and the free oil and movable oil content. LNP, MIP, and MIS pyrolysis analyses show that the residual shale oil mainly occurred in pores with diameters smaller than 200 nm, and the pore diameter when residual oil occurred in some laminated shale samples could reach 50 μm. The lower limits of the pore diameter where free oil and movable oil occurred were 7 and 30 nm, respectively. The mobility of shale oil is controlled by the shale oil component, thermal maturity, TOC content, and pore volume. The results herein provide a basis for the evaluation of optimal shale oil intervals
Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China
Abstract: A deep understanding of the basic geologic characteristics of the fine-grained shale layers in the Paleogene 1st sub-member of Kong 2 Member (Ek21) in Cangdong sag, Bohai Bay Basin, is achieved through observation of 140 m continuous cores and systematic analysis of over 1 000 core samples from two wells. Basic geological conditions for shale oil accumulation are proposed based on the unconventional geological theory of oil and gas. The shale rock system mainly developed interbedded formation of felsic shale, calcareous and dolomitic shale and carbonates; high quality hydrocarbon source rock formed in the stable and closed environment is the material base for shale oil enrichment; intergranular pores in analcite, intercrystalline pores in dolomite and interlayer micro-fractures make tight carbonate, calcareous and dolomitic shale and felsic shale effective reservoirs, with brittle mineral content of more than 70%; high abundance laminated shale rock in the lower section of Ek21 is rich in shale oil, with a total thickness of 70 m, burial depth between 2 800 to 4 200 m, an average oil saturation of 50%, a sweet spot area of 260 km2 and predicted resources of over 5×108 t. Therefore, this area is a key replacement domain for oil exploration in the Kongdian Formation of the Cangdong sag. At present, the KN9 vertical well has a daily oil production of 29.6 t after fracturing with a 2 mm choke. A breakthrough of continental shale oil exploration in a lacustrine basin is expected to be achieved by volume fracturing in horizontal wells. Key words: shale oil, fine grained deposits, horizontal well, volume fracturing, shale reservoir sweet spot, Paleogene Kongdian Formation, Cangdong sag, Bohai Bay Basi
The Occurrence Mechanism of Lacustrine Shale Oil in the Second Member of the Paleogene Kongdian Formation, Cangdong Sag, Bohai Bay Basin
The lacustrine shale in the second member of the Kongdian Formation (Ek2) is the most significant target of shale oil exploration in the Cangdong Sag, Bohai Bay Basin, China. To investigate the occurrence mechanisms and to reveal the influencing factors of shale oil mobility in Ek2, a series of analyses (X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), total organic carbon (TOC) analysis, Rock-Eval pyrolysis, low-temperature nitrogen physisorption (LNP), mercury intrusion porosimetry (MIP), and multiple isothermal stage (MIS) pyrolysis) were conducted on samples collected from well cores in the Cangdong Sag. The results show that the lithofacies can be categorized as laminated felsic shales, laminated and massive mixed shales, and laminated and massive carbonate shales. The shales were characterized by a high organic matter abundance and moderate thermal evolution with good to excellent hydrocarbon generation potential and contained a high abundance of Type I and II1 kerogens. Laminated felsic shales and laminated mixed shales, compared with other lithofacies, had clear advantages in the amount of free hydrocarbon that can be volatilized from the rock (S1), the oil saturation index (OSI) value, and the free oil and movable oil content. LNP, MIP, and MIS pyrolysis analyses show that the residual shale oil mainly occurred in pores with diameters smaller than 200 nm, and the pore diameter when residual oil occurred in some laminated shale samples could reach 50 μm. The lower limits of the pore diameter where free oil and movable oil occurred were 7 and 30 nm, respectively. The mobility of shale oil is controlled by the shale oil component, thermal maturity, TOC content, and pore volume. The results herein provide a basis for the evaluation of optimal shale oil intervals
Cycles of fine-grained sedimentation and their influences on organic matter distribution in the second member of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China
According to the theory of sequence stratigraphy based on continental transgressive-regressive (T-R) cycles, a 500 m continuous core taken from the second member of Kongdian Formation (Kong 2 Member) of Paleogene in Well G108-8 in the Cangdong Sag, Bohai Bay Basin, was tested and analyzed to clarify the high-frequency cycles of deep-water fine-grained sedimentary rocks in lacustrine basins. A logging vectorgraph in red pattern was plotted, and then a sequence stratigraphic framework with five-order high-frequency cycles was formed for the fine-grained sedimentary rocks in the Kong 2 Member. The high-frequency cycles of fine-grained sedimentary rocks were characterized by using different methods and at different scales. It is found that the fifth-order T cycles record a high content of terrigenous clastic minerals, a low paleosalinity, a relatively humid paleoclimate and a high density of laminae, while the fifth-order R cycles display a high content of carbonate minerals, a high paleosalinity, a dry paleoclimate and a low density of laminae. The changes in high-frequency cycles controlled the abundance and type of organic matter. The T cycles exhibit relatively high TOC and abundant endogenous organic matters in water in addition to terrigenous organic matters, implying a high primary productivity of lake for the generation and enrichment of shale oil
In-situ SEM characteristics of dispersed organic matter in continental shale with its implication for dessert evaluation--A case study of Paleogene shale in the Cangdong Sag, Bohai Bay Basin, China
Organic matter (OM) in continental shale serves as both the source of oil and gas and the storage space in unconventional petroleum systems. However, directly identifying the types of organic matter under SEM is challenging when simultaneously observing minerals and pores. Kong2 Member(E2k2) of Paleogene in Cangdong sag of Bohai Bay basin is a typical continental shale oil layer in China. Based on the positioning observation technology combining field emission scanning electron microscope (FE-SEM) and fluorescence microscope, the in-situ SEM identification and observation of macerals were carried out, and the identification methods and characteristics of organic macerals were summarized. The results show that: (1) Organic macerals in E2k2 shale are divided into vitrinite, inertinite, liptinite and solid bitumen by external morphology, hardness, brightness, color, protrusion, pore and fracture development of organic matter, and further subdivided into multiple subcategories. Based on the SEM charging effect of the remaining oil, it is further confirmed that the shale movable oil and oil generation potential developed by lipoid group is the largest, while the shale movable oil and oil generation potential developed by vitrinite group and inertinite group is the worst; (2) The organic pores include primary pores and secondary pores. The pores of primary organic matter are derived from the biological structure of primary organic matter, and the secondary organic pores are developed during the thermal maturation of oily organic matter. Clay mineral catalysis, difference of hydrocarbon generation potential and residual pores of primary organic matter control the development of organic pores; (3) Calcareous-dolomitic shale and felsic shale are typical lithology formed in relatively dry and humid climate respectively, and the types of organic macerals are significantly different. Although the former has weak total hydrocarbon generation, it has stronger oil generation potential and is worthy of attention in dessert prediction and exploration
In Vivo Production of HN Protein Increases the Protection Rates of a Minicircle DNA Vaccine against Genotype VII Newcastle Disease Virus
The Cre-recombinase mediated in vivo minicircle DNA vaccine platform (CRIM) provided a novel option to replace a traditional DNA vaccine. To further improve the immune response of our CRIM vaccine, we designed a dual promoter expression plasmid named pYL87 which could synthesize short HN protein under a prokaryotic in vivo promoter PpagC and full length HN protein of genotype VII Newcastle disease virus (NDV) under the previous eukaryotic CMV promoter at the same time. Making use of the self-lysed Salmonella strain as a delivery vesicle, chickens immunized with the pYL87 construction showed an increased serum haemagglutination inhibition antibody response, as well as an increased cell proliferation level and cellular IL-4 and IL-18 cytokines, compared with the previous CRIM vector pYL47. After the virus challenge, the pYL87 vector could provide 80% protection compared to 50% protection against genotype VII NDV in pYL47 immunized chickens, indicating a promising dual promoter strategy used in vaccine design