3 research outputs found

    Improving Bone Regeneration Using Chordin siRNA Delivered by pH-Responsive and Non-Toxic Polyspermine Imidazole-4,5-Imine

    No full text
    Background/Aims: Bone nonunion remains a challenge for orthopaedists. The technological advancements that have been made in precisely silencing target genes have provided promising methods to address this challenge. Methods: We detected the expression levels of the bone morphogenetic protein (BMP) inhibitors Chordin, Gremlin and Noggin using realtime PCR in bone mesenchymal stem cells (BMSCs) isolated from patients with normal fracture healing and those with bone nonunion. Moreover, we detected the expression of Chordin, Gremlin and Noggin during the osteogenic differentiation of human BMSCs (hBMSCs) using real-time PCR and Western blot. We delivered Chordin siRNA to hBMSCs using a previously reported cationic polymer, polyspermine imidazole-4,5-imine (PSI), as a pH-responsive and non-cytotoxic transfection agent. The apoptosis and cellular uptake efficiency were analysed by flow cytometry. Results: We identified Chordin as the most appropriate potential therapeutic target gene for enhancing the osteogenic differentiation of hBMSCs. Chordin knockdown rescued the osteogenic capacity of hBMSCs isolated from patients with bone nonunion. Highly efficient knockdown of Chordin was achieved in hBMSCs using PSI. Chordin knockdown promoted hBMSC osteogenesis and bone regeneration in vitro and in vivo. Conclusions: Our results suggest that Chordin is a potential target for improving osteogenesis and bone nonunion therapy and that responsive and non-toxic cationic polyimines such as PSI are therapeutically feasible carriers for the packaging and delivery of Chordin siRNA to hBMSCs

    Biscarbamate Cross-Linked Low-Molecular-Weight Polyethylenimine for Delivering Anti-chordin siRNA into Human Mesenchymal Stem Cells for Improving Bone Regeneration

    No full text
    Small-interfering RNA (siRNA) provides a rapid solution for drug design and provides new methods to develop customizable medicines. Polyethyleneimine 25 kDa (PEI25kDa) is an effective transfection agent used in siRNA delivery. However, the lack of degradable linkage causes undesirable toxicity, hindering its clinical application. We designed a low-molecular-weight cross-linked polyethylenimine named PEI-Et (Mn:1220, Mw:2895) by using degradable ethylene biscarbamate linkage with lower cytotoxicity and higher knockdown efficiency than PEI25kDa in delivery Chordin siRNA to human bone mesenchymal stem cells (hBMSCs). Suppression of Chordin by using anti-Chordin siRNA delivered by PEI-Et improved bone regeneration in vitro and in vivo associated with the bone morphogenetic protein-2 (BMP-2) mediated smad1/5/8 signaling pathway. Results of this study suggest that Chordin siRNA can be potentially used to improve osteogenesis associated with the BMP-2-mediated Smad1/5/8 signaling pathway and biodegradable biscarbamate cross-linked low-molecular-weight polyethylenimine (PEI-Et) is a therapeutically feasible carrier material to deliver anti-Chordin siRNA to hBMSCs
    corecore