6 research outputs found

    Chiral Aminoalcohols and Squaric Acid Amides as Ligands for Asymmetric Borane Reduction of Ketones: Insight to In Situ Formed Catalytic System by DOSY and Multinuclear NMR Experiments

    No full text
    A series of squaric acid amides (synthesized in 66–99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH3•SMe2. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% ee), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by 1H DOSY and multinuclear 1D and 2D (1H, 10/11B, 13C, 15N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone

    Small Heterocyclic Ligands as Anticancer Agents: QSAR with a Model G-Quadruplex

    No full text
    G-quadruplexes (GQs) have become valid targets for anticancer studies in recent decades due to their multifaceted biological function. Herewith, we aim to quantify interactions of potential heterocyclic ligands (Ls) with model GQs. For seven 4-aminoquinazolines and three 2-heteroaryl perimidines, seven of this ten-membered group so far unknown, we use routine quantum chemical modeling. As shown in the literature, a preferred mode of interaction of heterocycles with cellular structures is stacking to exposable faces of G-quadruplexes. To exploit the energy of this interaction as a molecular descriptor and achieve the necessary chemical precision, we use state of the art large-scale density functional theory (DFT) calculations of stacked heterocycles to a GQ. Actually, the GQ has been simplified for the computation by stripping it off all pentose phosphate residues into a naked model of stacked guanine quartets. The described model thus becomes computable. The obtained heterocyclic ligand GQ.L stacking energies, that is, their GQ affinities, are the necessary ligand descriptors. Using the ligand biological inhibitory activities (IC50) on a human malignant melanoma A375 cell line, we obtain a good linear relationship between computed ligand stacking affinities to GQ, and experimental log (IC50) values. Based on the latter relationship, we discuss a putative mechanism of anticancer activity of heterocyclic ligands via stacking interactions with GQs and thereby controlling cell regulatory activity. This mechanism may tentatively be applied to other condensed five- and six-membered small heterocycles as well

    Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts

    No full text
    Gamma irradiation has been applied as an efficient and inexpensive method for the sterilization of nuts for years. However, along with the benefits of such treatment, negative effects are possible because of the formation of reactive oxygen species with a toxic effect on important biologically active substances. Because of the scarce and contradictory information in the literature about gamma-irradiated almonds, the aim of our work was the examination of the lipid changes, antioxidant activity, and oxidative stability of almonds treated by 10 and 25 kGy gamma rays, as well as changes in intensity of the EPR spectra as an indicator for the stability of radiation-induced free radicals. The results revealed no significant differences in the EPR spectra of almonds treated at 10 and 25 kGy doses, neither in their intensity nor in kinetic behaviour. The EPR signals decayed exponentially over 250 days, with a decreasing of central line by 90%, with satellite lines by about 73%. No significant changes in the fat content, fatty acids composition, and acid value of irradiated almonds were observed. However, the amount of (alpha)tocopherols decreased from 292 to 175 mg/kg, whereas the conjugated dienes and trienes increased, K232 from 1.3 to 3 and K268 from 0.04 to 0.15, respectively, with the increasing of irradiation dose. The same was observed for total polyphenols in defatted almonds (1374 to 1520 mg/100 g), where in vitro antioxidant activity determined by ORAC and HORAC methods increased from 100 to 156 µmol TE/g and from 61 to 86 µmol GAE/g, respectively. The oxidative stability of oil decreased from 6 to 4 h at 120 °C and from 24.6 to 18.6 h at 100 °C (measured by Rancimat equipment). The kinetic parameters characterizing the oxidative stability of oil from 10 kGy irradiated almonds were studied before and after addition of different concentrations of ascorbyl palmitate as a synergist of tocopherols. Its effectiveness was concentration-dependent, and 0.75 mM ensured the same induction period as that of non-irradiated nut oil. Further enrichment with alpha-tocopherol in equimolar ratio with palmitate did not improve the oil stability. In conclusion, gamma irradiation is an appropriate method for the treatment of almonds without significant changes in fat content and fatty acids composition. The decreasing of oxidative stability after higher irradiation could be prevented by the addition of ascorbyl palmitate

    Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts

    No full text
    Gamma irradiation has been applied as an efficient and inexpensive method for the sterilization of nuts for years. However, along with the benefits of such treatment, negative effects are possible because of the formation of reactive oxygen species with a toxic effect on important biologically active substances. Because of the scarce and contradictory information in the literature about gamma-irradiated almonds, the aim of our work was the examination of the lipid changes, antioxidant activity, and oxidative stability of almonds treated by 10 and 25 kGy gamma rays, as well as changes in intensity of the EPR spectra as an indicator for the stability of radiation-induced free radicals. The results revealed no significant differences in the EPR spectra of almonds treated at 10 and 25 kGy doses, neither in their intensity nor in kinetic behaviour. The EPR signals decayed exponentially over 250 days, with a decreasing of central line by 90%, with satellite lines by about 73%. No significant changes in the fat content, fatty acids composition, and acid value of irradiated almonds were observed. However, the amount of (alpha)tocopherols decreased from 292 to 175 mg/kg, whereas the conjugated dienes and trienes increased, K232 from 1.3 to 3 and K268 from 0.04 to 0.15, respectively, with the increasing of irradiation dose. The same was observed for total polyphenols in defatted almonds (1374 to 1520 mg/100 g), where in vitro antioxidant activity determined by ORAC and HORAC methods increased from 100 to 156 µmol TE/g and from 61 to 86 µmol GAE/g, respectively. The oxidative stability of oil decreased from 6 to 4 h at 120 °C and from 24.6 to 18.6 h at 100 °C (measured by Rancimat equipment). The kinetic parameters characterizing the oxidative stability of oil from 10 kGy irradiated almonds were studied before and after addition of different concentrations of ascorbyl palmitate as a synergist of tocopherols. Its effectiveness was concentration-dependent, and 0.75 mM ensured the same induction period as that of non-irradiated nut oil. Further enrichment with alpha-tocopherol in equimolar ratio with palmitate did not improve the oil stability. In conclusion, gamma irradiation is an appropriate method for the treatment of almonds without significant changes in fat content and fatty acids composition. The decreasing of oxidative stability after higher irradiation could be prevented by the addition of ascorbyl palmitate

    Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from <i>Rosa damascena</i> Mill

    No full text
    Dry rose extract (DRE) obtained industrially by aqueous ethanol extraction from R. damascena flowers and its phenolic-enriched fraction, obtained by re-extraction with ethyl acetate (EAE) were the subject of this study. 1H NMR of DRE allowed the identification and quantitation of fructose and glucose, while the combined use of HPLC-DAD-ESIMS and HPLC-HRMS showed the presence of 14 kaempferol glycosides, 12 quercetin glycosides, 4 phenolic acids and their esters, 4 galloyl glycosides, 7 ellagitannins, and quinic acid. In addition, the structures of 13 of the flavonoid glycosides were further confirmed by NMR. EAE was found to be richer in TPC and TFC and showed better antioxidant activity (DPPH, ABTS, and FRAP) compared to DRE. Both extracts displayed significant activity against Propionibacterium acnes, Staphylococcus aureus, and S. epidermidis, but showed no activity against Candida albicans. Toxicity tests on normal human skin fibroblasts revealed low toxicity for both extracts with stronger effects observed at 24 hours of treatment that were compensated for over the following two days. Human hepatocarcinoma (HepG2) cells exhibited an opposite response after treatment with a concentration above 350 µg/mL for EAE and 500 µg/mL for DRE, showing increased toxicity after the third day of treatment. Lower concentrations were non-toxic and did not significantly affect the cell cycle parameters of either of the cell lines
    corecore