10 research outputs found

    Nomograms predict prognosis and hospitalization time using non-contrast CT and CT perfusion in patients with ischemic stroke

    Get PDF
    BackgroundStroke is a major disease with high morbidity and mortality worldwide. Currently, there is no quantitative method to evaluate the short-term prognosis and length of hospitalization of patients.PurposeWe aimed to develop nomograms as prognosis predictors based on imaging characteristics from non-contrast computed tomography (NCCT) and CT perfusion (CTP) and clinical characteristics for predicting activity of daily living (ADL) and hospitalization time of patients with ischemic stroke.Materials and methodsA total of 476 patients were enrolled in the study and divided into the training set (n = 381) and testing set (n = 95). Each of them owned NCCT and CTP images. We propose to extract imaging features representing as the Alberta stroke program early CT score (ASPECTS) values from NCCT, ischemic lesion volumes from CBF, and TMAX maps from CTP. Based on imaging features and clinical characteristics, we addressed two main issues: (1) predicting prognosis according to the Barthel index (BI)–binary logistic regression analysis was employed for feature selection, and the resulting nomogram was assessed in terms of discrimination capability, calibration, and clinical utility and (2) predicting the hospitalization time of patients–the Cox proportional hazard model was used for this purpose. After feature selection, another specific nomogram was established with calibration curves and time-dependent ROC curves for evaluation.ResultsIn the task of predicting binary prognosis outcome, a nomogram was constructed with the area under the curve (AUC) value of 0.883 (95% CI: 0.781–0.985), the accuracy of 0.853, and F1-scores of 0.909 in the testing set. We further tried to predict discharge BI into four classes. Similar performance was achieved as an AUC of 0.890 in the testing set. In the task of predicting hospitalization time, the Cox proportional hazard model was used. The concordance index of the model was 0.700 (SE = 0.019), and AUCs for predicting discharge at a specific week were higher than 0.80, which demonstrated the superior performance of the model.ConclusionThe novel non-invasive NCCT- and CTP-based nomograms could predict short-term ADL and hospitalization time of patients with ischemic stroke, thus allowing a personalized clinical outcome prediction and showing great potential in improving clinical efficiency.SummaryCombining NCCT- and CTP-based nomograms could accurately predict short-term outcomes of patients with ischemic stroke, including whose discharge BI and the length of hospital stay.Key ResultsUsing a large dataset of 1,310 patients, we show a novel nomogram with a good performance in predicting discharge BI class of patients (AUCs > 0.850). The second nomogram owns an excellent ability to predict the length of hospital stay (AUCs > 0.800)

    Effect of Deep Cryogenic Time on Martensite Multi-Level Microstructures and Mechanical Properties in AISI M35 High-Speed Steel

    No full text
    High-speed steel is widely used for cutting tools due to its convenience of preparation and cost-effectiveness. Previous research has shown that deep cryogenic treatments improve the mechanical properties of high-speed steel, due to the transformation of the residual austenite and the precipitation of carbide, while few studies have researched martensitic changes. The variations in martensite multi-level microstructures in AISI M35 high-speed steel, treated over different deep cryogenic time periods, were investigated in this study. Meanwhile, the effect of these variations on the mechanical properties of the selected steel was discussed. It was found that prolonging deep cryogenic time facilitated an increase in dislocation, low-angle grain boundary, and the coincident-site lattice boundary (especially the twin boundary) of martensite. The size of the martensite block (db) and lath (dl) decreased with deep cryogenic time. However, the effect on the microstructure was limited when the cryogenic treatment time exceeded 5 h. The increase in dislocation decreased the temperature for carbide precipitation and promoted fine carbide precipitation during tempering. The refinement of martensite multi-level microstructures and the greater precipitation of fine carbides gave the tempered specimens excellent impact toughness. The impact toughness of the tempered samples undergoing deep cryogenic treatment for more than 5 h was about 32% higher than the sample without deep cryogenic treatment

    Effect of Core Density on the Three-Point Bending Performance of Aluminum Foam Sandwich Panels

    No full text
    Using the powder-metallurgy rolling method, aluminum foam sandwich (AFS) panels with a metallurgical bond between the foam core and the panel can be produced. In this study, by manipulating the foaming temperature and duration, AFS panels were fabricated with varying core densities and thicknesses, all maintaining a panel thickness close to 1 mm. Through the three-point bending test, this research deeply delved into how core density influences the mechanical behaviors of these AFS panels. It became evident that a rise in core density positively affects the bending strength and failure load of the panels but inversely impacts their total energy absorption efficiency. Differing core densities brought about distinct failure patterns: low-density samples primarily showed panel indentation and core shear failures, whereas those of high density demonstrated panel yield and fractures. Furthermore, the research offers predictions on the initial failure loads for different failure modes and introduces a comprehensively designed failure diagram, laying a foundational theory for the production of AFS panels

    Three-Point Bending Behavior of Aluminum Foam Sandwich with Different Interface Bonding Methods

    No full text
    The interface bonding method has a great influence on the mechanical properties of aluminum foam sandwich (AFS). This study aims to investigate the effect of different interface bonding methods on the mechanical properties of AFS. In this paper, the metallurgical-bonding interface-formation mechanism of AFS prepared by powder metallurgy was investigated. The shear properties of metallurgical-bonded AFS were determined by the panel peeling test. The flexural properties and energy absorption of metallurgical-bonded and glued AFS were analyzed through the three-point bending test. The results show that the magnesium, silicon, and copper elements of the core layer diffuse to panels and form a metallurgical composite layer. The metallurgical-bonding strength between the panel and core layer is higher than that of the foam core layer. The peak load of metallurgically-bonded AFS is 24% more than that of glued AFS, and energy absorption is 12.2 times higher than that of glued AFS

    Compressive Properties and Energy Absorption Behavior of 316L Steel Foam Prepared by Space Holder Technique

    No full text
    The effect of porosity and pore size on the quasi-static compression properties and energy absorption characteristics of the steel foam was investigated in this paper. The 316L steel foams were prepared through powder metallurgy using urea as the space holder. The macrostructure of steel foam and microstructure of the pore walls were characterized, and the quasi-static compression experiments were conducted on the specimens in the axial direction at a strain rate of 10−3 s−1. The results show that the increase in porosity decreases the yield strength and plastic modulus of the steel foam but increases the densification strain of the steel foam. The yield strength of the steel foam decreases significantly when the pore size is 2.37 mm. However, the pore size has little effect on the plastic modulus. Moreover, the energy absorption per volume of the steel foam decreases with increasing porosity at the same strain. The effect of porosity on energy absorption efficiency is greater than that of pore size

    The MGF300-2R protein of African swine fever virus is associated with viral pathogenicity by promoting the autophagic degradation of IKKα and IKKβ through the recruitment of TOLLIP.

    No full text
    The multigene family genes (MGFs) in the left variable region (LVR) of the African swine fever virus (ASFV) genome have been reported to be involved in viral replication in primary porcine alveolar macrophages (PAMs) and virulence in pigs. However, the exact functions of key MGFs in the LVR that regulate the replication and virulence of ASFV remain unclear. In this study, we identified the MGF300-2R gene to be critical for viral replication in PAMs by deleting different sets of MGFs in the LVR from the highly virulent strain ASFV HLJ/18 (ASFV-WT). The ASFV mutant lacking the MGF300-2R gene (Del2R) showed a 1-log reduction in viral titer, and induced higher IL-1β and TNF-α production in PAMs than did ASFV-WT. Mechanistically, the MGF300-2R protein was found to interact with and degrade IKKα and IKKβ via the selective autophagy pathway. Furthermore, we showed that MGF300-2R promoted the K27-linked polyubiquitination of IKKα and IKKβ, which subsequently served as a recognition signal for the cargo receptor TOLLIP-mediated selective autophagic degradation. Importantly, Del2R exhibited a significant reduction in both replication and virulence compared with ASFV-WT in pigs, likely due to the increased IL-1β and TNF-α, indicating that MGF300-2R is a virulence determinant. These findings reveal that MGF300-2R suppresses host innate immune responses by mediating the degradation of IKKα and IKKβ, which provides clues to paving the way for the rational design of live attenuated vaccines to control ASF
    corecore