4 research outputs found

    Th1/Th2 Functional Imbalance After Acute Myocardial Infarction: Coronary Arterial Inflammation or Myocardial Inflammation

    Full text link
    Objectives: The study clarified whether the T-helper (Th)1/Th2 imbalance existed only in coronary arterial inflammation or in both coronary arterial inflammation and myocardial inflammation and explored the significance of the imbalance of Th1/Th2 function after acute myocardial infarction (AMI). Background: There are two different inflammatory processes in patients with AMI: the coronary arterial inflammation that leads to the pathogenesis of AMI and the myocardial inflammation after AMI that leads to ventricular remodeling, which are positively and negatively regulated by Th1 and Th2 lymphocytes, respectively. Methods : Peripheral blood mononuclear cells from 33 AMI patients, 22 unstable angina (UA) patients and splenocytes from 35 AMI Wistar rats were collected. Cytokine-producing Th cells were ambulatorily monitored by 3-color flow cytometry. Interferon (IFN)-γ and interleukin (IL)-4 mRNA in the rat myocardium and chemokine receptors CCR3,CCR5 and CXCR3 mRNA on the surface of rat T-lymphocytes after AMI were measured by RT-PCR. Results: IFN-γ-producing T-cells significantly increased in patients with AMI and UA within 24 hours after the onset of symptom. The high ratio of IFN-γ-producing T-cells recovered 1 week after the onset in UA patients, while it could be examined 1 week and even 1 month after the onset in AMI patients. The up-regulation of Th1 cell function is consistent with bad heart function. There was no significant difference on the frequencies of IL-4-producing T-cells between each group. 1 week, 2 weeks and 1 month after AMI, IFN-γ mRNA increased in the myocardium of rats, but there was no significant change on global Th cell functions. Conclusions: Th1/Th2 functional imbalance exists in both coronary arterial inflammation and myocardial inflammation processes. The up-regulation of Th1 cell-functions may participate in the immune-mediated ventricular remodeling after AMI.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44845/1/10875_2005_Article_4088.pd

    Substitution Mapping and Allelic Variations of the Domestication Genes from O. rufipogon and O. nivara

    No full text
    Abstract Background Domestication from wild rice species to cultivated rice is a key milestone, which involved changes of many specific traits and the variations of the genetic systems. Among the AA-genome wild rice species, O. rufipogon and O. nivara, have many favorable genes and thought to be progenitors of O. sativa. Results In the present study, by using O. rufipogon and O. nivara as donors, the single segment substitution lines (SSSLs) have been developed in the background of the elite indica cultivar, HJX74. In the SSSLs population, 11 genes for 5 domestication traits, including tiller angle, spreading panicle, awn, seed shattering, and red pericarp, were identified and mapped on 5 chromosomes through substitution mapping. Herein, allelic variations of 7 genes were found through sequence alignment with the known genes, that is, TA7-RUF was allelic to PROG1, TA8-RUF was allelic to TIG1, SPR4-NIV was allelic to OsLG1, AN4-RUF was allelic to An-1, SH4-NIV was allelic to SH4, and both RC7-RUF and RC7-NIV were allelic to Rc. Meanwhile, 4 genes, TA11-NIV, SPR3-NIV, AN3-NIV, and AN4-NIV, were considered as the novel genes identified in these SSSLs, because of none known genes for the related domestication traits found in the chromosomal locations of them. Conclusion The results indicated that the SSSLs would be precious germplasm resources for gene mining and utilization from wild rice species, and it laid the foundation for further analyses of the novel domestication genes to better understand the genetic basis in regulating the traits variation during domestication
    corecore