5 research outputs found

    Quality evaluation methods of chinese medicine based on scientific supervision: recent research progress and prospects

    No full text
    Abstract Traditional Chinese medicine (TCM) is increasingly getting attention worldwide, as it has played a very satisfactory role in treating COVID-19 during these past 3 years, and the Chinese government highly supports the development of TCM. The therapeutical theory and efficacies of Chinese medicine (CM) involve the safety, effectiveness and quality evaluation of CM, which requires a standard sound system. Constructing a scientific and reasonable CM quality and safety evaluation system, and establishing high-quality standards are the key cores to promote the high-quality development of CM. Through the traditional quality control methods of CM, the progress of the Q-marker research and development system proposed in recent years, this paper integrated the research ideas and methods of CM quality control and identified effective quality parameters. In addition, we also applied these effective quality parameters to create a new and supervision model for the quality control of CM. In conclusion, this review summarizes the methods and standards of quality control research used in recent years, and provides references to the quality control of CM and how researchers conduct quality control experiments

    MSL1 Promotes Liver Regeneration by Driving Phase Separation of STAT3 and Histone H4 and Enhancing Their Acetylation

    No full text
    Abstract Male‐specific lethal 1 (MSL1) is critical for the formation of MSL histone acetyltransferase complex which acetylates histone H4 Lys16 (H4K16ac) to activate gene expression. However, the role of MSL1 in liver regeneration is poorly understood. Here, this work identifies MSL1 as a key regulator of STAT3 and histone H4 (H4) in hepatocytes. MSL1 forms condensates with STAT3 or H4 through liquid–liquid phase separation to enrich acetyl‐coenzyme A (Ac‐CoA), and Ac‐CoA in turn enhances MSL1 condensate formation, synergetically promoting the acetylation of STAT3 K685 and H4K16, thus stimulating liver regeneration after partial hepatectomy (PH). Additionally, increasing Ac‐CoA level can enhance STAT3 and H4 acetylation, thus promoting liver regeneration in aged mice. The results demonstrate that MSL1 condensate‐mediated STAT3 and H4 acetylation play an important role in liver regeneration. Thus, promoting the phase separation of MSL1 and increasing Ac‐CoA level may be a novel therapeutic strategy for acute liver diseases and transplantation
    corecore