57 research outputs found

    Developing 1D nanostructure arrays for future nanophotonics

    Get PDF
    There is intense and growing interest in one-dimensional (1-D) nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS) templated growth using nano-channel alumina (NCA), and deposition of 1-D structures with glancing angle deposition (GLAD). As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers

    Thermodynamic Comparison of Two Types of Stirling Refrigerators

    No full text

    Statistic forecast of typhoons going over the Chinese coasts

    No full text

    Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells

    No full text
    Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment

    Influence of Annealing Time on Microstructure and Mechanical Properties of Al-14.5Si Alloy Prepared by Super-Gravity Solidification and Cold-Rolling

    No full text
    In this paper, super-gravity solidification and cold-rolling were utilized to obtain Al-14.5Si alloys. The influence of annealing time on microstructure and mechanical properties of Al-14.5Si alloys was investigated. Our results indicated that high elongation was achieved by super-gravity solidification due to the submicron eutectic Si, making it possible to undertake the conventional cold-rolling. The yield strength (~214 ± 11 MPa) was significantly enhanced (~68.5%) after cold-rolling mainly due to high dislocation density. The coarsening of eutectic Si could be observed during annealing, which resulted in a decrease in yield strength. The elimination of internal stress and lattice distortion during annealing led to a decrease in micro-cracks/voids beneath the fracture surface during tensile testing, which in turn enhanced the elongation

    Does the Metabolome of Wild-like Dendrobium officinale of Different Origins Have Regional Differences?

    No full text
    Dendrobium officinale, as a traditional Chinese medicine, has considerable commercial value and pharmacological activity. Environmental factors of different origins have a great influence on Dendrobium officinale metabolites, which affect its pharmacological activity. This study sought to identify the differential metabolites of wild-imitating cultivated D. officinale stems of different origins. Using the widely-targeted metabolomics approach, 442 metabolites were detected and characterized, including flavonoids, lipids, amino acids and derivatives, and alkaloids. We found that although the chemical constitution of D. officinale cultured in the three habitats was parallel, the contents were significantly different. Meanwhile, the KEGG pathway enrichment analysis revealed that the distinctive metabolites among the three groups were mainly involved in flavone and flavonol biosynthesis. To further explore the different contents of flavonoids, HPLC was performed on four main flavonoid contents, which can be used as one of the references to distinguish D. officinale from different growing origins. In conclusion, a comprehensive profile of the metabolic differences of D. officinale grown in different origins was provided, which contributed a scientific basis for further research on the quality evaluation of D. officinale

    High-Directionality Spin-Selective Directing of Photons in Plasmonic Nanocircuits

    No full text
    Efficient on-chip manipulation of photon spin is of crucial importance in developing future integrated nanophotonics as is electron spin in spintronics. The unidirectionality induced by the interaction between spin and orbital angular momenta suffers low efficiency in classical macroscopic optics, while it can be highly enhanced on subwavelength scales with proper architectures. Here we propose and demonstrate a spin-sorting achiral split-ring coupler to unidirectionally excite dielectricloaded plasmonic modes in two independent waveguides. We found experimentally that the impinging light with different spin can be selectively directed into one of two branching plasmonic waveguides with a directionality contrast up to 15.1 dB. A circular-helicity-independent compact beam splitter is also realized demonstrating great potential in designing complex interconnect nanocircuits. The illustrated approach is believed to open new avenues for developing advanced optical functionalities with flexible degree of freedom in manipulation of on-chip chirality within chiral optics
    • …
    corecore