305,701 research outputs found

    Yang-Mills condensate dark energy coupled with matter and radiation

    Get PDF
    The coincidence problem is studied for the dark energy model of effective Yang-Mills condensate in a flat expanding universe during the matter-dominated stage. The YMC energy ρy(t)\rho_y(t) is taken to represent the dark energy, which is coupled either with the matter, or with both the matter and the radiation components. The effective YM Lagrangian is completely determined by quantum field theory up to 1-loop order. It is found that under very generic initial conditions and for a variety of forms of coupling, the existence of the scaling solution during the early stages and the subsequent exit from the scaling regime are inevitable. The transition to the accelerating stage always occurs around a redshift z(0.30.5)z\simeq (0.3\sim 0.5). Moreover, when the Yang-Mills condensate transfers energy into matter or into both matter and radiation, the equation of state wyw_y of the Yang-Mills condensate can cross over -1 around z2z\sim 2, and takes on a current value 1.1\simeq -1.1. This is consistent with the recent preliminary observations on supernovae Ia. Therefore, the coincidence problem can be naturally solved in the effective YMC dark energy models.Comment: 24 pages, 18 figure

    Fermi motion and nuclear modification factor

    Full text link
    It has been argued recently that the so-called nuclear modification factor (RAAR_{AA}) is an observable useful for identifying the quark-gluon plasma. We discuss the effect of Fermi motion in nuclei on RAAR_{AA} at CERN SPS and BNL RHIC energies. Contrary to the simple intuition, rather large effects are found for CERN SPS. The Fermi motion in nuclei contributes significantly to the Cronin effect. The effect found is qualitatively similar to the one observed experimentally at CERN energies and similar to the one obtained in the models of multiple scattering of initial partons. We predict different size of the effect for different types of hadrons, especially at low energies.Comment: 16 pages + 6 figures, some calculations have been corrected, text has been modified accordingly, 1 figure has been added, in print Modern Physics Letters A19 (2004)

    Suzaku study of gas properties along filaments of A2744

    Full text link
    Context: We present the results of Suzaku observations of a massive galaxy cluster A2744, which is an active merger at z=0.308z=0.308. Aims: By using long X-ray observations of A2744, we aim to understand the growth of the cluster and the gas heating process through mass accretion along the surrounding filaments. Methods: We analyzed data from two-pointed Suzaku observations of A2744 to derive the temperature distribution out to the virial radius in three different directions. We also performed a deprojection analysis to study radial profiles of gas temperature, density, and entropy and compared the X-ray results with multi-wavelength data to investigate correlations with the surface density of galaxies and with radio relics. Results: The gas temperature was measured out to the virial radius r200r_{200} in the north-east region and to about 1.5r2001.5r_{200} in the north-west and south regions. The radial profile of the gas temperature is rather flat and the temperature is very high (even near r200r_{200}); it is comparable to the mean temperature of this cluster (kT=9kT=9 keV). These characteristics have not been reported in any other cluster. We find a hint of temperature jump in the northeast region whose location coincides with a large radio relic, indicating that the cluster experienced gas heating because of merger or mass accretion onto the main cluster. The temperature distribution is anisotropic and shows no clear positive correlation with the galaxy density, which suggests an inhomogeneous mass structure and a complex merger history in A2744.Comment: 8 pages, 8 figures, A&A accepte

    WLC22-4: Efficient request mechanism usage in IEEE 802.16

    Get PDF
    IEEE 802.16 protocols for metropolitan broadband wireless access systems have been standardized recently. According to the standard, a subscriber station can deliver bandwidth request messages to a base station by numerous methods. This paper provides both the simulation and analytical models for the investigation of specified random access method, which is compared with centralized polling and station- grouping mechanisms. Based on the assumptions of Bernoulli request arrival process and ideal channel conditions, the mean delay of a request transmission is evaluated for varying number of transmission opportunities and different arrival rates

    Quantum Computing via The Bethe Ansatz

    Full text link
    We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang--Baxter equation) and acts as a parametric two-body quantum gate. We conclude by comparing quantum computing via the factorisable scattering with topological quantum computing.Comment: 6 pages. Comments welcom
    corecore