7,680 research outputs found
Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe
The Majorana fermion, which is its own anti-particle and obeys non-abelian
statistics, plays a critical role in topological quantum computing. It can be
realized as a bound state at zero energy, called a Majorana zero mode (MZM), in
the vortex core of a topological superconductor, or at the ends of a nanowire
when both superconductivity and strong spin orbital coupling are present. A MZM
can be detected as a zero-bias conductance peak (ZBCP) in tunneling
spectroscopy. However, in practice, clean and robust MZMs have not been
realized in the vortices of a superconductor, due to contamination from
impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM)
states, which hampers further manipulations of Majorana fermions. Here using
scanning tunneling spectroscopy, we show that a ZBCP well separated from the
other discrete CdGM states exists ubiquitously in the cores of free vortices in
the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting
transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is
observed by angle-resolved photoemission spectroscopy, and its topological
nature is confirmed by band calculations. The observed ZBCP can be naturally
attributed to a MZM arising from this chiral topological surface states of a
bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for
studying MZMs and topological quantum computing.Comment: 32 pages, 15 figures (supplementary materials included), accepted by
PR
The DArk Matter Particle Explorer mission
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space
science missions within the framework of the Strategic Pioneer Program on Space
Science of the Chinese Academy of Sciences, is a general purpose high energy
cosmic-ray and gamma-ray observatory, which was successfully launched on
December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE
scientific objectives include the study of galactic cosmic rays up to
TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the
search for dark matter signatures in their spectra. In this paper we illustrate
the layout of the DAMPE instrument, and discuss the results of beam tests and
calibrations performed on ground. Finally we present the expected performance
in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart.
Phy
- …