13,581 research outputs found

    Brain APOE expression quantitative trait loci-based association study identified one susceptibility locus for Alzheimer\u27s disease by interacting with APOE epsilon 4

    Get PDF
    AbstractSome studies have demonstrated interactions of AD-risk single nucleotide polymorphisms (SNPs) in non-APOE regions with APOE genotype. Nevertheless, no study reported interactions of expression quantitative trait locus (eQTL) for APOE with APOE genotype. In present study, we included 9286 unrelated AD patients and 8479 normal controls from 12 cohorts of NIA Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI). 34 unrelated brain eQTLs for APOE were compiled from BRAINEAC and GTEx. We used multi-covariate logistic regression analysis to identify eQTLs interacted with APOE ε4. Adjusted for age and gender, substantia nigra eQTL rs438811 for APOE showed significantly strong interaction with APOE ε4 status (OR, 1.448; CI, 1.124–1.430; P-value = 7.94 × 10−6). APOE ε4-based sub-group analyses revealed that carrying one minor allele T of rs438811 can increase the opportunity of developing to AD by 26.75% in APOE ε4 carriers but not in non-carriers. We revealed substantia nigra eQTL rs438811 for APOE can interact with APOE ε4 and confers risk in APOE ε4 carriers only.</jats:p

    Dynamical generation of dark solitons in spin-orbit-coupled Bose-Einstein condensates

    Get PDF
    We numerically investigate the ground state, the Raman-driving dynamics and the nonlinear excitations of a realized spin-orbit-coupled Bose-Einstein condensate in a one-dimensional harmonic trap. Depending on the Raman coupling and the interatomic interactions, three ground-state phases are identified: stripe, plane wave and zero-momentum phases. A narrow parameter regime with coexistence of stripe and zero-momentum or plane wave phases in real space is found. Several sweep progresses across different phases by driving the Raman coupling linearly in time is simulated and the non-equilibrium dynamics of the system in these sweeps are studied. We find kinds of nonlinear excitations, with the particular dark solitons excited in the sweep from the stripe phase to the plane wave or zero-momentum phase within the trap. Moreover, the number and the stability of the dark solitons can be controlled in the driving, which provide a direct and easy way to generate dark solitons and study their dynamics and interaction properties.Comment: 10 pages, 9 figur

    GPA-Net:No-Reference Point Cloud Quality Assessment with Multi-task Graph Convolutional Network

    Full text link
    With the rapid development of 3D vision, point cloud has become an increasingly popular 3D visual media content. Due to the irregular structure, point cloud has posed novel challenges to the related research, such as compression, transmission, rendering and quality assessment. In these latest researches, point cloud quality assessment (PCQA) has attracted wide attention due to its significant role in guiding practical applications, especially in many cases where the reference point cloud is unavailable. However, current no-reference metrics which based on prevalent deep neural network have apparent disadvantages. For example, to adapt to the irregular structure of point cloud, they require preprocessing such as voxelization and projection that introduce extra distortions, and the applied grid-kernel networks, such as Convolutional Neural Networks, fail to extract effective distortion-related features. Besides, they rarely consider the various distortion patterns and the philosophy that PCQA should exhibit shifting, scaling, and rotational invariance. In this paper, we propose a novel no-reference PCQA metric named the Graph convolutional PCQA network (GPA-Net). To extract effective features for PCQA, we propose a new graph convolution kernel, i.e., GPAConv, which attentively captures the perturbation of structure and texture. Then, we propose the multi-task framework consisting of one main task (quality regression) and two auxiliary tasks (distortion type and degree predictions). Finally, we propose a coordinate normalization module to stabilize the results of GPAConv under shift, scale and rotation transformations. Experimental results on two independent databases show that GPA-Net achieves the best performance compared to the state-of-the-art no-reference PCQA metrics, even better than some full-reference metrics in some cases
    • …
    corecore