220,070 research outputs found
Helium Recombination Lines as a Probe of Abundance and Temperature Problems
The paper presents a simplified formula to determine an electron temperature,
Te(He I), for planetary nebulae (PNe) using the He I 7281/6678 line flux ratio.
In our previous studies of Te(He I) (Zhang et al. 2005), we used the He I line
emission coefficients given by Benjamin et al. (1999). Here we examine the
results of using more recent atomic data presented by Porter et al. (2005). A
good agreement is shown, suggesting that the effect of uncertainties of atomic
data on the resultant Te(He I) is negligible. We also present an analytical
formula to derive electron temperature using the He I discontinuity at 3421 A.
Our analysis shows that Te(He I) values are significantly lower than electron
temperatures deduced from the Balmer jump of H I recombination spectra, Te(H
I), and that inferred from the collisionally excited [O III] nebular-to-auroral
forbidden line flux ratio, Te([O III]). In addition, Te(H I) covers a wider
range of values than either Te(He I) or Te([O III]). This supports the
two-abundance nebular model with hydrogen-deficient material embedded in
diffuse gas of a ``normal'' chemical composition (i.e. ~solar).Comment: 5 pages, 3 figures. To appear in the RevMexAA proceedings of "The
Ninth Texas-Mexico Conference on Astrophysics
Ideal strengths and bonding properties of PuO2 under tension
We perform a first-principles computational tensile test on PuO based
on density-functional theory within local density approximation (LDA)+\emph{U}
formalism to investigate its structural, mechanical, magnetic, and intrinsic
bonding properties in the four representative directions: [001], [100], [110],
and [111]. The stress-strain relations show that the ideal tensile strengths in
the four directions are 81.2, 80.5, 28.3, and 16.8 GPa at strains of 0.36,
0.36, 0.22, and 0.18, respectively. The [001] and [100] directions are
prominently stronger than other two directions since that more PuO bonds
participate in the pulling process. Through charge and density of states
analysis along the [001] direction, we find that the strong mixed
ionic/covalent character of PuO bond is weakened by tensile strain and
PuO will exhibit an insulator-to-metal transition after tensile stress
exceeds about 79 GPa.Comment: 11 pages, 6 figure
- …