2,502 research outputs found

    Transport Properties through Double Barrier Structure in Graphene

    Full text link
    The mode-dependent transmission of relativistic ballistic massless Dirac fermion through a graphene based double barrier structure is being investigated for various barrier parameters. We compare our results with already published work and point out the relevance of these findings to a systematic study of the transport properties in double barrier structures. An interesting situation arises when we set the potential in the leads to zero, then our 2D problem reduces effectively to a 1D massive Dirac equation with an effective mass proportional to the quantized wave number along the transverse direction. Furthermore we have shown that the minimal conductivity and maximal Fano factor remain insensitive to the ratio between the two potentials V_2/V_1=\alpha.Comment: 18 pages, 12 figures, clarifications and reference added, misprints corrected. Version to appear in JLT

    Effects of electrojet turbulence on a magnetosphere-ionosphere simulation of a geomagnetic storm

    Full text link
    Ionospheric conductance plays an important role in regulating the response of the magnetosphere‐ionosphere system to solar wind driving. Typically, models of magnetosphere‐ionosphere coupling include changes to ionospheric conductance driven by extreme ultraviolet ionization and electron precipitation. This paper shows that effects driven by the Farley‐Buneman instability can also create significant enhancements in the ionospheric conductance, with substantial impacts on geospace. We have implemented a method of including electrojet turbulence (ET) effects into the ionospheric conductance model utilized within geospace simulations. Our particular implementation is tested with simulations of the Lyon‐Fedder‐Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere. We examine the impact of including ET‐modified conductances in a case study of the geomagnetic storm of 17 March 2013. Simulations with ET show a 13% reduction in the cross polar cap potential at the beginning of the storm and up to 20% increases in the Pedersen and Hall conductance. These simulation results show better agreement with Defense Meteorological Satellite Program observations, including capturing features of subauroral polarization streams. The field‐aligned current (FAC) patterns show little differences during the peak of storm and agree well with Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) reconstructions. Typically, the simulated FAC densities are stronger and at slightly higher latitudes than shown by AMPERE. The inner magnetospheric pressures derived from Tsyganenko‐Sitnov empirical magnetic field model show that the inclusion of the ET effects increases the peak pressure and brings the results into better agreement with the empirical model.This material is based upon work supported by NASA grants NNX14AI13G, NNX13AF92G, and NNX16AB80G. The National Center for Atmospheric Research is sponsored by the National Science Foundation. This work used the XSEDE and TACC computational facilities, supported by National Science Foundation grant ACI-1053575. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. We thank the AMPERE team and the AMPERE Science Center for providing the Iridium derived data products. All model output, simulation codes, and analysis routines are being preserved on the NCAR High-Performance Storage System and will be made available upon written request to the lead author of this publication. (NNX14AI13G - NASA; NNX13AF92G - NASA; NNX16AB80G - NASA; National Science Foundation; ACI-1053575 - National Science Foundation

    Based On Body Communication Wireless Medical Monitoring System Construction

    Get PDF
    Abstractthe concept of the body communication is put forward, the rapid development of portable medical equipment, medical monitoring systems are improving. Through analyzing the characteristics of body communication and the restrictions of medical equipment, we proposed the idea of medical monitoring system of wireless, and elaborated the system's principle of work. The construction of this system to further promote the development of medical monitoring system and provide security for the healthy development of body society

    Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump

    Get PDF
    The MtrCDE multidrug pump, from Neisseria gonorrhoeae, is assembled from the inner and outer membrane proteins MtrD and MtrE, which are connected by the periplasmic membrane fusion protein MtrC. Although it is clear that MtrD delivers drugs to the channel of MtrE, it remains unclear how drug delivery and channel opening are connected. We used a vancomycin sensitivity assay to test for opening of the MtrE channel. Cells expressing MtrE or MtrE-E434K were insensitive to vancomycin; but became moderately and highly sensitive to vancomycin respectively, when coexpressed with MtrC, suggesting that the MtrE channel opening requires MtrC binding and is energy-independent. Cells expressing wild-type MtrD, in an MtrCE background, were vancomycin-insensitive, but moderately sensitive in an MtrCE-E434K background. The mutation of residues involved in proton translocation inactivated MtrD and abolished drug efflux, rendered both MtrE and MtrE-E434K vancomycin-insensitive; imply that the pump-component interactions are preserved, and that the complex is stable in the absence of proton flux, thus sealing the open end of MtrE. Following the energy-dependent dissociation of the tripartite complex, the MtrE channel is able to reseal, while MtrE-E434K is unable to do so, resulting in the vancomycin-sensitive phenotype. Thus, our findings suggest that opening of the OMP via interaction with the MFP is energy-independent, while both drug export and complex dissociation require active proton flux

    Thermal Resonance in Signal Transmission

    Get PDF
    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.Comment: To appear in Phys. Rev.

    Spin diffusion at finite electric and magnetic fields

    Full text link
    Spin transport properties at finite electric and magnetic fields are studied by using the generalized semiclassical Boltzmann equation. It is found that the spin diffusion equation for non-equilibrium spin density and spin currents involves a number of length scales that explicitly depend on the electric and magnetic fields. The set of macroscopic equations can be used to address a broad range of the spin transport problems in magnetic multilayers as well as in semiconductor heterostructure. A specific example of spin injection into semiconductors at arbitrary electric and magnetic fields is illustrated

    Improved approximation algorithm for k-level UFL with penalties, a simplistic view on randomizing the scaling parameter

    Full text link
    The state of the art in approximation algorithms for facility location problems are complicated combinations of various techniques. In particular, the currently best 1.488-approximation algorithm for the uncapacitated facility location (UFL) problem by Shi Li is presented as a result of a non-trivial randomization of a certain scaling parameter in the LP-rounding algorithm by Chudak and Shmoys combined with a primal-dual algorithm of Jain et al. In this paper we first give a simple interpretation of this randomization process in terms of solving an aux- iliary (factor revealing) LP. Then, armed with this simple view point, Abstract. we exercise the randomization on a more complicated algorithm for the k-level version of the problem with penalties in which the planner has the option to pay a penalty instead of connecting chosen clients, which results in an improved approximation algorithm

    Ground State and Spectral Properties of a Quantum Impurity in d-Wave Superconductors

    Full text link
    The variational approach of Gunnarsson and Sch\"onhammer to the Anderson impurity model is generalized to study d-wave superconductors in the presence of dilute spin-1/2 impurities. We show that the local moment is screened when the hybridization exceeds a nonzero critical value at which the ground state changes from a spin doublet to a spin singlet. The electron spectral functions are calculated in both phases. We find that while a Kondo resonance develops above the Fermi level in the singlet phase, the spectral function exhibits a low-energy spectral peak below the Fermi level in the spin doublet phase. The origin of such a ``virtual Kondo resonance'' is the existence of low-lying collective excitations in the spin-singlet sector. We discuss our results in connection to recent spectroscopic experiments on Zn doped high-Tc_c superconductors.Comment: 5 pages, 4figures, revised versio

    Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings

    Full text link
    There are relatively few H2CO mappings of large-area giant molecular cloud (GMCs). H2CO absorption lines are good tracers for low-temperature molecular clouds towards star formation regions. Thus, the aim of the study was to identify H2CO distributions in ambient molecular clouds. We investigated morphologic relations among 6-cm continuum brightness temperature (CBT) data and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA telescope) and midcourse space experiment (MSX) data, and considered the impact of background components on foreground clouds. We report simultaneous 6-cm H2CO absorption lines and H110\alpha radio recombination line observations and give several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3 (70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100') GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can compare correlations. The resolution for H2CO, 12CO and MSX data was about 10', 8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m MSX colorscale and CBT data revealed great morphological correlation in the large area, although there are some discrepancies between 12CO and H2CO peaks in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a high CBT, but a H2CO cloud to the north is possible against the cosmic microwave background. A statistical diagram shows that 85.21% of H2CO absorption lines are distributed in the intensity range from -1.0 to 0 Jy and the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in Astrophysics and Space Scienc
    corecore