437,707 research outputs found

    Dynamics and constraints of state-led global city formation in emerging economies: The case of Shanghai

    Get PDF
    This article seeks to contribute to a better understanding of the role of the state in influencing the formation of global cities in emerging economies, and highlights the complexity of this role due to challenging external environment, divergent interests of the state actors, and the socio-economic and institutional constraints that these actors are under. At an empirical level, it examines the progress of Shanghai in its state-led development as an emerging global city and the respective roles of the nationalcentral and local states in this process

    Restricted Value Iteration: Theory and Algorithms

    Full text link
    Value iteration is a popular algorithm for finding near optimal policies for POMDPs. It is inefficient due to the need to account for the entire belief space, which necessitates the solution of large numbers of linear programs. In this paper, we study value iteration restricted to belief subsets. We show that, together with properly chosen belief subsets, restricted value iteration yields near-optimal policies and we give a condition for determining whether a given belief subset would bring about savings in space and time. We also apply restricted value iteration to two interesting classes of POMDPs, namely informative POMDPs and near-discernible POMDPs

    Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios

    Get PDF
    In the widely-studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=\omega_2/\omega_1=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=\omega_2/\omega_1=1:4 and 2:3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multi-wave mixing theory, but support the gas-ionization model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.Comment: 6 pages, 3 figure

    An effective quasi-one-dimensional description of a spin-1 atomic condensate

    Full text link
    Within the mean field theory we extend the effective quasi-1D non-polynomial Schr\"{o}dinger equation (NPSE) approach to the description of a spin-1 atomic condensate in a tight radial confinement geometry for both weak and strong atom-atom interactions. Detailed comparisons with full time dependent 3D numerical simulations show excellent agreement as in the case of a single component scalar condensate, demonstrating our result as an efficient and effective tool for the understanding of spin-1 condensate dynamics observed in several recent experiments.Comment: 5 pages, 3 eps figures, to appear in Phys. Rev. A. Small typoes corrections. Updated Reference

    Topological phase transitions in small mesoscopic chiral p-wave superconductors

    Full text link
    Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultra-small limit, the cylindrically-symmetric giant-vortex states are the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states
    • …
    corecore