8,402 research outputs found

    Intrinsic/Extrinsic Density-Ellipticity Correlations and Galaxy-Galaxy Lensing

    Full text link
    We compute both extrinsic (lensing) and intrinsic contributions to the (galaxy-)density-ellipticity correlation function, the latter done using current analytic theories of tidal alignment. The gravitational lensing contribution has two components: one is analogous to galaxy-galaxy lensing and the other arises from magnification bias -- that gravitational lensing induces a modulation of the galaxy density as well as ellipticity. On the other hand, the intrinsic alignment contribution vanishes, even after taking into account source clustering corrections, which suggests the density-ellipticity correlation might be an interesting diagnostic in differentiating between intrinsic and extrinsic alignments. {\it However}, an important assumption, commonly adopted by current analytic alignment theories, is the Gaussianity of the tidal field. Inevitable non-Gaussian fluctuations from gravitational instability induces a non-zero intrinsic density-ellipticity correlation, which we estimate. We also argue that non-Gaussian contributions to the intrinsic {\it ellipticity-ellipticity} correlation are often non-negligible. This leads to a linear rather than, as is commonly assumed, quadratic scaling with the power spectrum on sufficiently large scales. Finally, we estimate the contribution of intrinsic alignment to low redshift galaxy-galaxy lensing measurements (e.g. SDSS), due to the partial overlap between foreground and background galaxies: the intrinsic contamination is about 10 - 30 % at 10'. Uncertainties in this estimate are discussed.Comment: 14 pages, 5 figures, submitted to Ap

    A Missing Partner Model With 24-plet Breaking SU(5)

    Full text link
    We give a missing partner model using 24-plet instead of 75-plet to break the SU(5) symmetry. Fermion masses and mixing are generated through the Georgi-Jarlskog mechanism. The model is constructed at renormalizable level at very high energy. The perturbative region is extended for the unification gauge coupling. Constrains by proton decay is also satisfied.Comment: 18 pages, 6 figure

    On Random Walks with a General Moving Barrier

    Full text link
    Random walks with a general, nonlinear barrier have found recent applications ranging from reionization topology to refinements in the excursion set theory of halos. Here, we derive the first-crossing distribution of random walks with a moving barrier of an arbitrary shape. Such a distribution is shown to satisfy an integral equation that can be solved by a simple matrix inversion, without the need for Monte Carlo simulations, making this useful for exploring a large parameter space. We discuss examples in which common analytic approximations fail, a failure which can be remedied using the method described here.Comment: 6 pages, 7 figures, submitted to Ap

    Braided anti-flexible bialgebras

    Full text link
    We introduce the concept of braided anti-flexible bialgebra and construct cocycle bicrossproduct anti-flexible bialgebras. As an application, we solve the extending problem for anti-flexible bialgebras by using some non-abelian cohomology theory.Comment: 37 pages, many typos, misprints and English language errors are corrected.The proofs which contain long direct computations are shortened. Continues arXiv:2112.11977 and arXiv:2203.1569

    Tunnelling effect of charged and magnetized particles from the Kerr–Newman–Kasuya black hole

    Get PDF
    AbstractIn this Letter, we extend the Parikh–Wilczek tunnelling framework to calculate the emission rate of a particle with electric and magnetic charges. We first reconstruct the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges. Then, in the background of Kerr–Newman–Kasuya black hole spacetime, we calculate the emission spectrum of the outgoing particles with electric and magnetic charges. For the sake of simplicity, we only consider the case that the rate of electric and magnetic charge of the emission particle is constant and equals that of the black hole. In this case, the emission spectrum deviates from the pure thermal spectrum, but it is consistent with an underlying unitary theory and takes the same functional form as that of uncharged massless particles. Finally, discussions about the result are presented
    • …
    corecore