234,215 research outputs found

    Possible DDˉD\bar{D} and BBˉB\bar{B} Molecular states in a chiral quark model

    Full text link
    We perform a systematic study of the bound state problem of DDˉD\bar{D} and BBˉB\bar{B} systems by using effective interaction in our chiral quark model. Our results show that both the interactions of DDˉD\bar{D} and BBˉB\bar{B} states are attractive, which consequently result in IG(JPC)=0+(0++)I^G(J^{PC})=0^+(0^{++}) DDˉD\bar{D} and BBˉB\bar{B} bound states.Comment: arXiv admin note: substantial text overlap with arXiv:1204.395

    Once again: Instanton method vs. WKB

    Get PDF
    A recent analytic test of the instanton method performed by comparing the exact spectrum of the Lameˊ{\acute e} potential (derived from representations of a finite dimensional matrix expressed in terms of su(2)su(2) generators) with the results of the tight--binding and instanton approximations as well as the standard WKB approximation is commented upon. It is pointed out that in the case of the Lameˊ{\acute e} potential as well as others the WKB--related method of matched asymptotic expansions yields the exact instanton result as a result of boundary conditions imposed on wave functions which are matched in domains of overlap.Comment: 10 pages, no figures. References list revised according to JHE

    NLTE study of scandium in the Sun

    Full text link
    We investigate the formation of neutral and singly ionized scandium lines in the solar photospheres. The research is aimed derive solar loggfϵ\log gf\epsilon_{\odot}(Sc) values for scandium lines, which will later be used in differential abundance analyses of metal-poor stars. Extensive statistical equilibrium calculations were carried out for a model atom, which comprises 92 terms for \ion{Sc}{i} and 79 for \ion{Sc}{ii}. Photoionization cross-sections are assumed to be hydrogenic. Synthetic line profiles calculated from the level populations according to the NLTE departure coefficients were compared with the observed solar spectral atlas. Hyperfine structure (HFS) broadening is taken into account. The statistical equilibrium of scandium is dominated by a strong underpopulation of \ion{Sc}{i} caused by missing strong lines. It is nearly unaffected by the variation in interaction parameters and only marginally sensitive to the choice of the solar atmospheric model. Abundance determinations using the ODF model lead to a solar Sc abundance of between logϵ=3.07\log\epsilon_\odot = 3.07 and 3.13, depending on the choice of ff values. The long known difference between photospheric and meteoritic scandium abundances is confirmed for the experimental ff-values.Comment: 10 pages, 6 figures, A&A accepte
    corecore