257,248 research outputs found
Understanding the performance of the electric power industry in China
© 2012 The Earth Institute at Columbia University and the Massachusetts
Institute of Technology.Despite three decades of reform, China's electricity sector is still organized by a “new reformed plan” where capacity investment has been liberalized but prices and production remain controlled. This paper examines the impact of the current plan prices on end-users with reference to the OECD and how the plan price of electricity supply is formed. We argue that the plan price is set in an attempt to balance the interests of the public and the power industry. We find that China's industries do not pay a cheaper price for electricity than the West, and the plan price is formed through bargain between the firm and the state, which allows the firm to have a soft price constraint on its costs
On cost-effective communication network designing
How to efficiently design a communication network is a paramount task for
network designing and engineering. It is, however, not a single objective
optimization process as perceived by most previous researches, i.e., to
maximize its transmission capacity, but a multi-objective optimization process,
with lowering its cost to be another important objective. These two objectives
are often contradictive in that optimizing one objective may deteriorate the
other. After a deep investigation of the impact that network topology, node
capability scheme and routing algorithm as well as their interplays have on the
two objectives, this letter presents a systematic approach to achieve a
cost-effective design by carefully choosing the three designing aspects. Only
when routing algorithm and node capability scheme are elegantly chosen can
BA-like scale-free networks have the potential of achieving good tradeoff
between the two objectives. Random networks, on the other hand, have the
built-in character for a cost-effective design, especially when other aspects
cannot be determined beforehand.Comment: 6 pages, 4 figure
Antidote application: an educational system for treatment of common toxin overdose
Poisonings account for almost 1% of emergency room visits each year. Time is a critical factor in dealing with a toxicologic emergency. Delay in dispensing the first antidote dose can lead to life-threatening sequelae. Current toxicological resources that support treatment decisions are broad in scope, time-consuming to read, or at times unavailable. Our review of current toxicological resources revealed a gap in their ability to provide expedient calculations and recommendations about appropriate course of treatment. To bridge the gap, we developed the Antidote Application (AA), a computational system that automatically provides patient-specific antidote treatment recommendations and individualized dose calculations. We implemented 27 algorithms that describe FDA (the US Food and Drug Administration) approved use and evidence-based practices found in primary literature for the treatment of common toxin exposure. The AA covers 29 antidotes recommended by Poison Control and toxicology experts, 19 poison classes and 31 poisons, which represent over 200 toxic entities. To the best of our knowledge, the AA is the first educational decision support system in toxicology that provides patient-specific treatment recommendations and drug dose calculations. The AA is publicly available at http://projects.met- hilab.org/antidote/
- …