4 research outputs found

    Sample-Entropy-Based Method for Real Driving Fatigue Detection with Multichannel Electroencephalogram

    No full text
    Safe driving plays a crucial role in public health, and driver fatigue causes a large proportion of crashes in road driving. Hence, this paper presents the development of an efficient system to determine whether a driver is fatigued during real driving based on 14-channel EEG signals. The complexity of the EEG signal is then quantified with the sample entropy method. Finally, we explore the performance of multiple kernel-based algorithms based on sample entropy features for classifying fatigue and normal subjects by only analyzing noninvasive scalp EEG signals. Experimental results show that the highest classification accuracy of 97.2%, a sensitivity of 95.6%, a specificity of 98.9%, a precision of 98.9%, and the highest AUC value of 1 are achieved using SampEn feature and cubic SVM classifier (SCS Model). It is hence concluded that SampEn is an effectively distinguishing feature for classifying normal and fatigue EEG signals. The proposed system may provide us with a new and promising approach to monitoring and detecting driver fatigue at a relatively low computational cost

    Detecting Unfavorable Driving States in Electroencephalography Based on a PCA Sample Entropy Feature and Multiple Classification Algorithms

    No full text
    Unfavorable driving states can cause a large number of vehicle crashes and are significant factors in leading to traffic accidents. Hence, the aim of this research is to design a robust system to detect unfavorable driving states based on sample entropy feature analysis and multiple classification algorithms. Multi-channel Electroencephalography (EEG) signals are recorded from 16 participants while performing two types of driving tasks. For the purpose of selecting optimal feature sets for classification, principal component analysis (PCA) is adopted for reducing dimensionality of feature sets. Multiple classification algorithms, namely, K nearest neighbor (KNN), decision tree (DT), support vector machine (SVM) and logistic regression (LR) are employed to improve the accuracy of unfavorable driving state detection. We use 10-fold cross-validation to assess the performance of the proposed systems. It is found that the proposed detection system, based on PCA features and the cubic SVM classification algorithm, shows robustness as it obtains the highest accuracy of 97.81%, sensitivity of 96.93%, specificity of 98.73% and precision of 98.75%. Experimental results show that the system we designed can effectively monitor unfavorable driving states
    corecore