1,200 research outputs found

    What Powered the Optical Transient AT2017gfo Associated with GW170817?

    Full text link
    The groundbreaking discovery of the optical transient AT2017gfo associated with GW170817 opens a unique opportunity to study the physics of double neutron star (NS) mergers. We argue that the standard interpretation of AT2017gfo as being powered by radioactive decay of r-process elements faces the challenge of simultaneously accounting for the peak luminosity and peak time of the event, as it is not easy to achieve the required high mass, and especially the low opacity of the ejecta required to fit the data. A plausible solution would be to invoke an additional energy source, which is probably provided by the merger product. We consider energy injection from two types of the merger products: (1) a post-merger black hole powered by fallback accretion; and (2) a long-lived NS remnant. The former case can only account for the early emission of AT2017gfo, with the late emission still powered by radioactive decay. In the latter case, both early- and late-emission components can be well interpreted as due to energy injection from a spinning-down NS, with the required mass and opacity of the ejecta components well consistent with known numerical simulation results. We suggest that there is a strong indication that the merger product of GW170817 is a long-lived (supramassive or even permanently stable), low magnetic field NS. The result provides a stringent constraint on the equations of state of NSs

    Dark Fluxes from Accreting Black Holes and Direct Detections

    Full text link
    We show that accreting black hole systems could be sources for keV light dark matter flux through several different mechanisms. We discuss two types of systems: coronal thermal plasmas around supermassive black holes in active galactic nuclei (AGNs), and accretion disks of stellar-mass X-ray black hole binaries (BHBs). We explore how these black hole systems may produce keV light dark matter fluxes and find that in order to account for the XENON1T excess, the dark fluxes from the observed AGNs and BHBs sources have to exceed the Eddington limit. We also extend the black hole mass region to primordial black holes (PBHs) and discuss the possibility of contributing to keV light dark flux via superradiance or Hawking radiation of PBHs. Besides, black holes can be good accelerators to accrete and boost heavy dark matter particles. If considering collisions or dark electromagnetism, those particles could then escape and reach the benchmark speed of 0.1c at the XENON1T detector.Comment: 10 pages, 4 figure

    A supra-massive magnetar central engine for short GRB 130603B

    Full text link
    We show that the peculiar early optical and in particular X-ray afterglow emission of the short duration burst GRB 130603B can be explained by continuous energy injection into the blastwave from a supra-massive magnetar central engine. The observed energetics and temporal/spectral properties of the late infrared bump (i.e., the "kilonova") are also found consistent with emission from the ejecta launched during an NS-NS merger and powered by a magnetar central engine. The isotropic-equivalent kinetic energies of both the GRB blastwave and the kilonova are about Ek∼1051E_{\rm k}\sim 10^{51} erg, consistent with being powered by a near-isotropic magnetar wind. However, this relatively small value demands that most of the initial rotational energy of the magnetar (∼a few×1052 erg)(\sim {\rm a~ few \times 10^{52}~ erg}) is carried away by gravitational wave radiation. Our results suggest that (i) the progenitor of GRB 130603B would be a NS-NS binary system, whose merger product would be a supra-massive neutron star that lasted for about ∼1000\sim 1000 seconds; (ii) the equation-of-state of nuclear matter would be stiff enough to allow survival of a long-lived supra-massive neutron star, so that it is promising to detect bright electromagnetic counterparts of gravitational wave triggers without short GRB associations in the upcoming Advanced LIGO/Virgo era.Comment: Five pages including 1 Figure, to appear in ApJ
    • …
    corecore